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Abstract Here, we report on a highly sensitive method for the detection of P(3HB)
accumulation in Escherichia coli cells based on the automated flow cytometry system using
fluorescent dyes. E. coli containing P(3HB) were stained with either BODIPY or Nile red
fluorescent dye, and their staining properties were analyzed under a variety of conditions.
Compared with Nile red, BODIPY was much more sensitive in staining P(3HB) and overall
demonstrated a more rapid staining of cells, a greater resistance to photobleaching, and
greater cell viability. In addition, we also successfully monitored heterogeneity in P(3HB)
accumulation within a cell population using BODIPY staining and flow cytometry. We
believe this optimized staining method using BODIPY in combination with screening by
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high-speed flow cytometer will be helpful in the engineering of host cells toward an
enhanced production of bioplastics.

Keywords FACS . BODIPY. Nile red . Poly(3-hydroxybutyrate) . Escherichia coli

Introduction

Polyhydroxyalkanoates (PHAs) are biomass-derived polyesters consisting of a variety of
hydroxycarboxylic acids, which are synthesized and accumulate in the cytoplasm of bacteria
[1, 2]. As polymer materials, PHAs are attractive polyesters because they are biocompatible
and biodegradable plastics; the material properties of which can be designed by modulating
the types and compositions of monomer constituents of PHAs [3–5]. For example, poly(3-
hydroxybutyrate) [P(3HB)], the representative member of PHAs, has thermoplastic proper-
ties similar to polypropylene [2]. Some PHAs such as P(3HB) and poly(3-hydroxybutyrate-
co-3-hydroxyvalerate) [P(3HB-co-3HV)] are now produced on a large scale for their
commercialization [6]. However, the high production costs of PHAs are hindering their
commercialization [7, 8]. Optimization of the fermentation process in the production of
PHAs is required to reduce the associated production costs. Factors affecting the production
costs of PHAs include the PHA content in bacteria, PHA yield on carbon sources, and PHA
productivity [7, 8]. A critical factor in the production of PHAs is the performance of the host
microorganism to produce the desired polymer at reduced cost; consequently, there is a
strong need to develop microorganisms that can efficiently produce PHAs from renewable
carbon sources.

Flow cytometers equipped with a sorting system can be used to analyze and distinguish
the fluorescent signals of a range of biomolecules (from bacteria to animals) and to isolate
the desired biomolecules with a high specificity and reliability [9]. Given its unique
capability to analyze a large number of individual cells across several parameters simulta-
neously, this technique has been used for the rapid analysis of a number of biomolecule
interactions (protein–protein, protein–cells, etc.) and biomolecule formations (lipid, inclu-
sion body, etc.), as well as for high-throughput screening of engineered proteins and host
cells [10]. For fluorescent activated cell sorting (FACS) to be successful, the use of an
appropriate fluorescent dye for the selective labeling of target molecules with a high
sensitivity is critical. Previously, screening protocols were developed for the direct detection
of accumulated PHAs in vivo in cells stained with lipophilic dyes [11]. Lipophilic dyes such
as Nile blue A [12] and Sudan black B [13] provided researchers with fluorescence-based
detection methods that were relatively sensitive to PHA accumulating cells. However, the
application of these dyes in high-throughput screening of PHA accumulating microorgan-
isms has not been successful because the dyes are dissolved in organic solvents such as
ethanol and acetone; both of which significantly inhibit the growth of microorganisms.
Master plates should be prepared to select PHA accumulating cells because microorganisms
stained by these dyes lose viability. Recently, a highly sensitive viable colony staining
method used for the detection of PHA accumulating cells was developed by employing
Nile red [9-(diethyl amino) benzo[a]phenoxazin-5(5H)-one] dissolved in dimethyl sulfoxide
(DMSO) as the staining dye [11]. The Nile red staining method has been used successfully in
screening natural PHA-producing bacteria and for a PHA synthase engineered to have
enhanced activity and different substrate specificity [14, 15]. However, these colony-based
staining methods were based on time- and labor-intensive screening of colonies, which
cannot provide us with optimized high-throughput screening of PHA synthases.
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In this study, we developed a highly sensitive viable screening method using BODIPY
(4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) for the detection of
P(3HB) accumulating cells. BODIPY is a highly lipophilic green fluorescent dye,
and because of its exceptional spectroscopic properties, it has been widely used in
the labeling of a variety of biomolecules such as phospholipids, cholesterol, etc.
[16–18]. In this work, we optimized the conditions for BODIDPY staining of P(3HB)
granules in Escherichia coli, and the staining properties of this dye were compared with those
of Nile red.

Materials and Methods

Bacterial Strains, Plasmids, and Genes

E. coli strain XL1-Blue (Stratagene Cloning Systems, La Jolla, CA, USA) was used for
cloning and production of P(3HB). Plasmid pCnCAB, which expresses the Ralstonia
eutropha PHA biosynthesis genes, has been previously described [19].

Culture Conditions

Recombinant E. coli XL1-Blue transformed with pCnCAB was initially cultured at 37 °C in
Luria-Bertani (LB) medium (containing 10 g/L tryptone, 5 g/L yeast extract, and 5 g/L
NaCl). After overnight cultivation in 5 mL of LB broth, the E. coli cells were inoculated into
25 mL of LB medium supplemented with 20 g/L of glucose in a 100 mL flask and cultivated
at 37 °C in a rotary shaker at 250 rpm for 48 h. In all flask cultivations, ampicillin (Amp,
50 μg/mL) was added to the medium.

Pre-treatment of Cell for Staining with Fluorescent Dyes

For flow cytometric analysis, cells were stained with either Nile red or BODIPY fluorescent
dyes. After cultivation, the cultures were cooled on ice for 10 min, and the cells harvested by
centrifugation (5 min, 1,000×g, 4 °C) to an optical density at 600 nm (OD600) of 0.4. The
cell pellets were first resuspended (the first suspension) in either 1 mL of (1) ice-cold TSE
buffer (10 % (w/v) sucrose, 10 mM Tris–HCl (pH 7.5), 2.5 mM Na–EDTA) or (2) distilled
deionized water (DDW) and incubated on ice for an additional 10 min. After centrifugation
(5 min, 3,000×g, 4 °C), cells were resuspended (the second suspension) in either 1 mL of (1)
ice-cold 1 mM MgCl2 or (2) DDW. These four different conditions for pretreatment are
summarized in Table 1. The cells were mixed with 12.5 μl of Nile red (Sigma-Aldrich Co.,

Table 1 Four different conditions for pretreatment of cells

Conditions Reagent in the first suspension Reagent in the second suspension

Pretreatment I TSE buffera DDW

Pretreatment II TSE buffera 1 mM MgCl2
Pretreatment III DDW DDW

Pretreatment IV DDW 1 mM MgCl2

a 10 % (w/v) sucrose, 10 mM Tris–HCl (pH 7.5), 2.5 mM Na–EDTA
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St. Louis, MO, USA) dissolved in DMSO (0.4 μg/μl) or 5 μl of BODIPY (Invitrogen,
Eugene, OR, USA) dissolved in DMSO (1 μg/μl). After vigorous mixing by vortex,
both mixtures were incubated in the dark for 5 min at room temperature. Finally,
the cells were centrifuged (5 min, 3,000×g, 4 °C) and washed with ice-cold DDW
twice and immediately analyzed using flow cytometer and confocal fluorescence
microscope.

Flow Cytometric Analysis

After staining, the cellular fluorescence was measured using a Moflo XDP flow
cytometer (Beckman Coulter, Brea, CA, USA). Cell excitation was achieved using
blue light (488 nm) provided by an air-cooled argon ion laser. The emission signals of
Nile red and BODIPY were measured on different channels: FL1 channel (530/40 nm)
for BODIPY-stained cells and FL2 channel (580/30 nm) for Nile red-stained cells. For
the flow cytometric analysis of each dye, a total of 5×105 cells were analyzed, and all
FSC (forward scatter) and SSC (side scatter) image and mean fluorescence intensity values
were recorded using the MoFloTM XDP SUMMIT Software version 5.2 (Beckman
Coulter).

Microscopic Analysis of P(3HB) Granules

The cells were harvested, washed twice with DDW, and visualized using light microscope
(Nikon optiphot-2, Nikon, Tokyo, Japan). The images were captured using Nikon ACT-2U
Imaging Software version 1.62. Stained cells were washed three times with DDW to remove
any residual fluorescent dye prior to visualization by confocal fluorescence microscope (Carl
Zeiss LSM510 META, Jena, Germany). Cell excitation was accomplished using a 488 nm
argon laser, and images were filtered by a band pass 500∼550 nm (BODIPY) and long pass
560 nm (Nile red) filter. Photographs were captured with a Carl Zeiss LSM software (version
4.2.rk).

Cell Viability Analysis

During the flow cytometric analysis of the stained cells, the highly fluorescent cells were
sorted at “single cell” mode, and each cell was collected in a 96 deep-well plate (Bioneer,
Daejeon, Republic of Korea) containing 1 mL LB with ampicillin (50 μg/mL). After the
sorting of 48 cells (half plate for each sample), the plates were incubated at 37 °C with
vigorous shaking (200 rpm). At the completion of the 48 h incubation, the number of wells
with viable cells was counted.

Analytical Methods

P(3HB) concentration was determined by gas chromatography using the Agilent 6890 N GC
System (Agilent Technologies, Palo Alto, CA, USA) equipped with a fused silica capillary
column (SPBTM-5, 30 m×0.32 mm ID, 0.25 μm film; Supelco, Bellefonte, PA, USA) and
benzoic acid as an internal standard [20]. Cell concentration, defined as dry cell weight per
liter of culture broth, was determined as previously described [21]. The residual cell
concentration was defined as the cell concentration minus P(3HB) concentration. The
P(3HB) content (wt%) was defined as the percentile ratio of P(3HB) concentration to cell
concentration.
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Results and Discussion

Production of P(3HB) in E. coli

After cultivation of E. coli XL1-Blue harboring pCnCAB for 24 h, the accumulation of
P(3HB) granules in cells were first observed by light microscope. The accumulation of
P(3HB) granules was clearly observed in the culture of recombinant cells, while no granules
were observed for the control, wild-type E. coli XL1-Blue (Supplementary material Fig. S1).
The cells were stained with either BODIPYor Nile red, and the resultant staining of P(3HB)
granules was analyzed by confocal fluorescence microscope. The results obtained confirmed
the specificity of both dyes for cellular P(3HB) granules (Supplementary material Fig. S1).
In contrast, the negative control sample failed to stain with either of the dyes because of the
absence of P(3HB) producing cells (data not shown). The conditions for the staining of
P(3HB) granules with fluorescent dyes were further optimized using the recombinant
P(3HB) producing E. coli culture.

Optimization of Pre-treatment Conditions

The internalization of dyes into host cells may require a carrier such as acetone [22], glycerol
[23], DMSO [23, 24], or ethanol [17]. Tyo et al. [25] demonstrated that sucrose shock was
the most effective method for staining E. coli cells with Nile red. Based on this finding, we
investigated four different conditions for the pre-treatment of E. coli cells (Table 1). After
pre-treatment with one of the four aforementioned conditions, cells were stained with either
Nile red or BODIPY for 5 min, and their fluorescence signal intensities were measured by
flow cytometer. As expected, the intensity of the fluorescence signals for the P(3HB) non-
producing cells (negative control) was very low and was independent of the pre-treatment
conditions and fluorescent dyes used (data not shown). In contrast, all cells producing
P(3HB) granules recorded much higher and very different signal intensities, and this was
dependent on both the fluorescent dye and pre-treatment conditions used. The intensities of
the fluorescence signals for the BODIPY-stained cells differed for each pre-treatment
condition. Of the four pre-treatments, ‘Pretreatment I’ yielded the highest intensity followed
by ‘Pretreatment II’ (Fig. 1a). The use of DDW for the first suspension resulted in
considerably lower signal intensities compared with the corresponding sucrose treatments.
In addition, the use of DDW in the first suspension (Pretreatment III and IV) yielded twin-
peak histograms, which indicated heterogeneity in cell staining. The use of DDW in the
second suspension (Pretreatment I) gave a slightly higher signal, but there was no substantial
difference to that for MgCl2 (Pretreatment II). The results for Nile red-stained cells were
similar to those observed for BODIPY staining in that the use of sucrose for the first
suspension (Pretreatment I and II) produced higher signal intensities than those for DDW
(Pretreatment III and IV), and the use of DDW or MgCl2 for the second suspension did not
give any appreciable difference in signal intensities (Fig. 1b). These results suggest that
sucrose treatment might help fluorescent dyes permeate the cell wall and allow cells to be
stained more effectively. For all conditions investigated, BODIPY staining gave much
higher fluorescent intensities when compared with Nile red (Fig. 1a and b). This was most
evident for cells pre-treated under the Pretreatment I condition. The mean fluorescent
intensities of BODIPY-stained cells were as high as 14.8 times those of the corresponding
Nile red-stained cells. These results suggest that BODIPY is more effective than Nile red in
staining P(3HB), and its superiority in staining was confirmed further in the proceeding
experiments.
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Effect of Staining Time and Comparison of Photobleaching

To optimize time for staining with fluorescent dyes, the effect of staining time on the
individual cells was investigated. After cultivation, the cells were pre-treated under Pretreat-
ment I condition prior to the addition of either Nile red or BODIPY. The cells were incubated
in the presence of the dye for periods of 1, 5, 10, or 20 min, and the fluorescent intensities
analyzed by flow cytometer. The fluorescent intensities of the sample changed very little
over time irrespective of the dye used (Fig. 2a). However, as reported previously in this
study, BODIPY staining produced greater fluorescence intensity compared with Nile red
staining and was consistent across all time periods investigated. The results obtained from
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Fig. 1 The effect of pre-treatments on cell staining with fluorescent dyes. After cell pre-treatment with four
different conditions, P(3HB)-producing cells were stained with a BODIPY or b Nile red, and their fluores-
cence signal intensities analyzed by flow cytometry with excitation wavelength at 488, 530, and 560 nm for
emission wavelength
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this analysis demonstrated that 5 min was the optimum time required for BODIPY staining
of E. coli cells.

A loss in cellular fluorescence or photobleaching is of concern when undertaking
fluorescence studies, particularly when the screening is performed over a prolonged period
of time. After staining cells with either dye for 5 min, the samples were photobleached under
fluorescent light for various durations (up to 1 h), after which the fluorescent intensities were
measured as previously described. Cells stained with Nile red demonstrated a gradual loss in
fluorescence with time, and only 52 % of initial intensities remained after 1 h (Fig. 2b). Cells
stained with BODIPYalso showed a gradual loss in fluorescence with time, but the loss rate
was relatively slower than Nile red (Fig. 2b). A relatively higher intensity (75 % of initial
intensities) was kept until 1 h after staining. These results indicate that BODIPY is superior
to Nile red for the long-term screening of cells.

Fig. 2 Effect of staining time on cell staining and analysis of photobleaching. a Cells were mixed with
fluorescent dye for different time intervals to address the effects on staining. b After staining cell with
fluorescent dyes for 5 min, the fluorescent intensities of cells were analyzed at different time intervals. The
closed circle and square symbols represent the BODIPY and Nile red-stained cells, respectively
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Effect of Fluorescent Dye Concentration on Cell Staining

To determine the optimum dye concentration required for cell staining, E. coli cells were stained
with Nile red or BODIPYat three different concentrations (0.1, 1, or 5 μg/mL) for 5 min. The
cells were harvested from culture at four different time points (12, 24, 36, and 48 h). The content
of P(3HB) would be expected to be quite variable for each sample culture. After cell staining,
the fluorescence intensities were measured and compared with the actual contents of P(3HB),
which were determined by gas chromatography (GC). In the early stages of cell growth (12–
24 h), the cells accumulated P(3HB) to a greater extent (up to approx. 45 % of total dry cell
weight), compared with the later stage (36–48 h), for which there was a gradual decrease in
P(3HB) content. When staining with BODIPY, greater fluorescent signal intensities were
obtained when the higher concentration (5 μg/mL) of dye was used (Fig. 3a). Also, the mean
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Fig. 3 The effect of fluorescent dye concentration on BODIPY and Nile red staining. Cells containing
different amounts of P(3HB) were stained with fluorescent dyes at different concentrations: a 0.1, b 1 or c
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fluorescence highly correlated with P(3HB) contents, except when the low concentration of dye
(0.1 μg/mL) was used. In the case of Nile red staining, the fluorescent signal intensities
correlated well with P(3HB) content (Fig. 3b). Of the three concentrations investigated, the
intermediate concentration (1 μg/mL) of Nile red yielded the highest signal intensities, but
overall the intensities were very low when compared with those for BODIPY staining. We
conclude that BODIPY is more effective at staining P(3HB) than Nile red and that the optimum
conditions for the staining of cells producing P(3HB) is the pre-treatment of cells under
Pretreatment I condition prior to staining with 5 μg/mL of BODIPY for 5 min.

Correlation of Fluorescence Intensity with P(3HB) Content

Figure 4 indicates a good correlation between fluorescence signal intensity and P(3HB)
content (%wt). To verify this correlation, additional cells with variable amounts of P(3HB)
were examined. Each cell was stained with BODIPYunder optimum staining conditions, and
the fluorescent intensities were analyzed by flow cytometer. P(3HB) content of each cell was

R² = 0.9313
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Fig. 4 a Correlation of P(3HB) contents (%) and mean fluorescence of BODIPY-stained cells. The solid line
indicates the regression line. b Comparing the cell viability after staining with Nile red or BODIPY. Cells
containing low P(3HB) were prepared under (i) Pretreatment I or (ii) Pretreatment II. Also, cells containing
high P(3HB) were prepared under (iii) Pretreatment I or (iv) Pretreatment II. The white and black bars
represent the cells stained with Nile red and BODIPY, respectively
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also analyzed by GC. As illustrated in Fig. 4a, the geometric mean of the flow cytometer
measurement correlated very well (R2=0.93) with the analytical P(3HB) measurements over
a wide dynamic range (from 5 % to 50 %) of P(3HB) contents. It can be concluded that
FACS analysis data for BODIPY-stained cells are highly reliable and that the combination of
BODIPY staining and FACS analysis can be a useful tool for P(3HB) analysis.

Viability of Cells Stained with Fluorescent Dyes

Cell viability is also an important consideration when performing cell staining and cell
sorting. After staining with the fluorescent dyes (BODIPY or Nile red), the effect of cell
staining on cell viability was investigated. In this work, we examined cells that had differing
contents of P(3HB): low content (∼4.5 %) or high content (∼34.3 %). First, each cell was
pretreated under Pretreatment I or Pretreatment II conditions (Table 1). Previously, Tyo et al
[25] reported that the pre-treatment of cells with MgCl2 prior to staining with Nile red
improved cell viability. So, the effect of MgCl2 pre-treatment (Pretreatment II) on cell
viability was also investigated in the current study. For an accurate analysis of cell viability,
only highly fluorescent cells that contained P(3HB) granules were sorted individually into
96 deep-well plates by flow cytometer. After overnight incubation, only wells exhibiting cell
growth were counted and their viabilities determined. The combined techniques of single
cell sorting and individual cultivation in 96 deep-well plates affords greater accuracy and
more reliable data than other methods in which all stained cells are spread together on agar
plates. The viability data obtained from the spreading agar plate method may inadvertently
include false-positive cells that failed to stain but grew well. When the P(3HB) content was
low (∼4.5 %), cells stained with BODIPY showed much higher viabilities (50∼55 %) than
the Nile red-stained cells, independent of MgCl2 treatment (Fig. 4b). As reported by Tyo et
al [25], cells subjected to Nile red staining and treated with MgCl2 (Pretreatment II
condition) exhibited slightly higher viability (21 %) when compared with DDW-treated
(Pretreatment I) cells (15 %). But, overall cell viability was much lower for Nile red-stained
cells than for those stained with BODIPY. When P(3HB) content was high (∼34.3 %),
overall cell viability was low and was independent of the fluorescent dyes used and MgCl2
treatment. It has been well documented that too high an accumulation of P(3HB) signifi-
cantly inhibits cell growth [26]. Considering that P(3HB) accumulation significantly affects
cell physiology [27, 28], low cell viability might result from cell damage by the high P(3HB)
content and not by the fluorescent dye.

Monitoring of Heterogeneous Populations During P(3HB) Synthesis

P(3HB) synthesis requires the coordinated reactions of several enzymes, and it is highly
sensitive to the culture environment [29]. In some cases, individual cells respond differently
to their environment and accumulate P(3HB) to differing levels. Consequently, P(3HB)-
producing and non-producing cells can reside in a single culture reactor. When P(3HB)
accumulates to a high level in the cell, heterogeneity in populations becomes a serious issue.
Under these circumstances, P(3HB) non-producing cells can grow more rapidly and may
cause a decline in P(3HB) productivity. Sample heterogeneity cannot be detected by
conventional methods such as GC analysis, which measures the total content of P(3HB)
across the whole population. In contrast, the formation of P(3HB) granules in individual
cells can be analyzed using a flow cytometer, which measures the change in the cellular
light-scattering properties caused by the accumulation of P(3HB) granules. Two cells that
either did or did not produce P(3HB) were analyzed by flow cytometer, and their light-
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scattering properties were compared by FSC versus SSC channels. The negative cells that
did not produce P(3HB) granules were more concentrated at a low range in FSC versus SSC
channel where most wild-type E. coli cells appeared generally, while cells producing P(3HB)
granules showed the shift of populations to right-up position in SSC versus FSC channels
(Supplementary materials Fig. S2).

To demonstrate the monitoring of heterogeneity during P(3HB) synthesis by FACS, cells
were cultivated and harvested at four different culture times (12, 24, 36, and 48 h), and after
staining under optimal conditions, cells were analyzed using a flow cytometer. In the early
stages of cell growth (12 and 24 h), microscope analysis confirmed that cells were homo-
geneous in P(3HB) formation (Fig. 5a). This was consistent with the data obtained from the
flow cytometric analysis whereby single major populations in the FSC-SSC channel and a
single peak in the FL1 histogram were observed (Fig. 5b and c). However, as cells
progressed to a late phase of cell growth (36 and 48 h), P(3HB) non-producing cells
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Region ‘R1’ in (b) was used to set a gate in each histogram (c)
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emerged, and two populations co-existed in the same culture (Fig. 5a). This heterogeneity
was correctly detected by flow cytometer. In the FSC-SSC channel, a new dense area came
out from the original positions of P(3HB) producing cells, and in the last stage, two
populations were detected in the same channel (Fig. 5b). The FL1 histogram contained
two peaks; one peak had a high mean fluorescence signal, while the other peak had a
relatively low mean fluorescence signal, which was indicative of fewer P(3HB) granules
(Fig. 5c).

Conclusions

In this study, we optimized the conditions for the staining of cellular P(3HB) using the
fluorescent dye BODIPY. BODIPY stain had a high specificity for P(3HB) granules
accumulated within E. coli host cells, and the resultant fluorescence signal intensities
strongly correlated with real P(3HB) contents. Compared with Nile red staining, BODIPY
was the superior dye, having a greater sensitivity, longer maintenance in the individual host
cell, and greater cell viability. In addition, flow cytometer can provide more reliable
information on the distribution of P(3HB) granules at a single cell level, which cannot be
obtained by conventional analysis. The use of non-toxic BODIPY dye and high-speed FACS
sorter will be a powerful tool in the engineering of a PHA synthase host cell and ultimately
toward the enhanced production of bioplastics.
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