[Supplementary materials]

Development of a new platform for secretory production of recombinant proteins in *Corynebacterium glutamicum*

Sung Sun Yim¹, Jae Woong Choi¹, Roo Jin Lee¹, Yong Jae Lee¹, Se Hwa Lee¹, So Young Kim², Ki Jun Jeong^{1,3,*}

¹Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 335 Gwahagno, Yuseong-gu, Daejeon 305-701, Republic of Korea

²Bio R&D Center, CJ CheilJedang, 92 Gayang-dong, Gangseo-gu, Seoul 175-724, Republic of Korea

³Institute for the BioCentury, KAIST, 335 Gwahagno, Yuseong-gu, Daejeon 305-701, Republic of Korea

Primer name	Primer sequence (5' to 3') ^a
MCS-F	ATTAATGGTACCGGGCCCCCCCCCGAGGTCGACTCTAGAGGCCCAGCCGGCC
	ATTATAATTAGGCCTCGGGGGGCCGCGGGCCGCATTAAT
MCF-R	ATTAATGCGGCCGCGG
rrnBTer-F	GAGCGGCCGCTGCCTGGCGGCAGTA
rrnBTer-R	GAGCGGCCGCAAAAGGCCATCCGTCAGGAT
Cg1514-F	ATTAAT GGTACC AGCCTGACTAGCGGTGTTTAAG
Cg1514-R	TAATGCGGCCGCTTAATGATGGTGATGGTGATGTTTTAGAGTTTTTAGTCTA
	CCGAGATTTGTCCA
Cg1514-R2	ATTAATTCTAGATTTTTAGAGTTTTTAGTCTACCGAGATTTGTCC
Cg1514ss-R	ATTAATTCTAGAGCTTTGTGCAGTGGAAGTAGG
Cg1514P-R	AAAGAGCTCCTGATCATGTAGGTG
H36-F1	ATTAATGGTACCTCTATCTGGTGCCCTAAACGGGGGAATATTAACGGGCCCA
	GGGTGGTCGCACCTT
H36-cg1514-F2	CCAGGGTGGTCGCACCTTGGTTGGTAGGAGTAGCATGGGATCCTTGTTAAAC
	AGAGTCAGTCGTATTGC
Н36-	CCAGGGTGGTCGCACCTTGGTTGGTAGGAGTAGCATGGGATCCATGTTAAAC
cg1514ATG-F2	AGAGTCAGTCGTATTGC
aaGFP-F	ATTAATGGCCCAGCCGGCCAAAGTAAAGGAGAAGAACTTTTCACTGGAGTT
	G
GFP-R	ATTAATGGCCCCCGAGGCCTTATTTGTCATCGTCATCTTTATAATCGTCGAC
	CTTGGATAGTTCATCCA
aaXynA-F	ATTAATGGCCCAGCCGGCCAAGCCGAGAGCACGCTCGGCGCCGCGGCGG
XynA-R	ATTAATGGCCCCCGAGGCCCTATTAATGATGGTGATGGTGATGGGTGCGGG
	TCCAGCGTTGGTTGCT
aaM18-F	ATTAGGCCCAGCCGGCCAAGACATTCAGATGACCCAGACC
M18-R	TAAT GGCCCCCGAGGCC TTATCACTTATCATCGTCGTCCTTGTA
aaAmyA-F	ATTAAT GGCCCAGCCGGCC AAGATGAACAAGTGTCAATGAAAGATGGTAC
AmyA-R	ATTAATGGCCCCCGAGGCCCTATTAATGATGGTGATGGTGATGTTTTAGCCC
	ATCTTTATATAGTTTCCAGATTTTACAAGG
aacAbHuL22-F	ATGCATGC TCTAGA CAGGTCCAACTGCAAGAAAGCGGT
cAbHuL22-R	ATGCATGC GCGGCCGC TCAGTGATGGTGATGATGATGTGAAGAGAC

 Table S1. List of primers used in PCR experiments.

^aRestriction enzyme sites are shown in bold.

^bStratagene Cloning System, La Jolla, CA.

Figure S1. SDS-PAGE analysis of culture supernatant from the fed-batch cultivation of *C*. *glutamicum* harboring pH36M2 (Yim et al., 2014). Arrows indicate the most overexpressed protein bands (Identified as Cg1514 (black arrow), and Cg2052 (white arrows)).

Figure S2. Comparison of four different signal peptides for secretion of endoxylanase. SDS-PAGE analysis of culture supernatant. Lane 1, pCES208; Lane 2, pH36-cspBss-XynA; Lane 3, pCG-H36A-XynA (H36-cg1514ss-XynA); Lane 4, pCES-H36-XynA (H36-porBss-XynA); Lane 5, pH36-torAss-XynA. Same volume (10 μ L) of 30 times concentrated culture supernatant was loaded on each lane. Arrowhead indicates XynA (~48 kDa)

Figure S3. SDS-PAGE analysis of culture supernatant in the secretory production of endoxylanase under four different promoters. Lane 1, pCES208; Lane 2, pCG-H36A-XynA (H36-cg1514ss-XynA); Lane 3, P_{Sod} -cg1514ss-XynA; Lane 4, pCG-S-XynA (P_{cg1514} -cg1514ss-XynA); Lane 5, P_{Tuf} -cg1514ss-XynA. Same volume (10 µl) of 30 times concentrated culture supernatant was loaded on each lane. The arrowhead indicates XynA (~48 kDa).

Figure S4. Secretory production of α -amylase (AmyA). A: SDS-PAGE analysis of extracellular proteins by Cg1514-based AmyA secretion system in the flask cultivation. Black arrow indicates AmyA. Lane 1, *C. glutamicum* harboring pCES208 (negative control); Lane 2, pCG-S-AmyA. Same volume (10 µL) of 30 times concentrated culture supernatant was loaded on each lane. B: Secreted α -amylase volume activity in the culture supernatant. One unit of activity was defined as the amount of enzyme required to release 1 µmol of glucose from starch per minute at 30°C.

Figure S5. Secretory production of cAbHuL22 VHH. A: Western blot analysis of extracellular proteins by Cg1514-based cAbHuL22 VHH secretion system in the flask cultivation. Black arrow indicates cAbHuL22 VHH. Lane 1, *C. glutamicum* harboring pCES208 (negative control); Lane 2, pCG-S-cAb. Same volume (10 μ L) of 30 times concentrated culture supernatant was loaded on each lane. B: ELISA of culture supernatant. Gray bar (signal from negative control (Bovine serum albumin, BSA) coated well), Black bar (signal from target antigen (Human lysozyme)).

Figure S6. Comparison of promoter strength of H36 synthetic promoter and *cg1514* promoter. A) SDS-PAGE analysis of whole cell lysate. Lane 1, pCES208; Lane 2, pCES-H36-GFP (H36-GFP); Lane 3, pCg1514-GFP (P_{cg1514} -GFP). Arrowhead indicates GFP (~28 kDa). B) Analysis of fluorescence intensity by fluorometer. C) Quantification cycle value from qRT-PCR experiment.