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Multiplex recording of cellular events
over time on CRISPR biological tape
Ravi U. Sheth,1,2 Sung Sun Yim,1 Felix L. Wu,1,2 Harris H. Wang1,3*

Although dynamics underlie many biological processes, our ability to robustly and
accurately profile time-varying biological signals and regulatory programs remains limited.
Here we describe a framework for storing temporal biological information directly in the
genomes of a cell population.We developed a “biological tape recorder” in which biological
signals trigger intracellular DNA production that is then recorded by the CRISPR-Cas
adaptation system. This approach enables stable recording over multiple days and
accurate reconstruction of temporal and lineage information by sequencing CRISPR
arrays. We further demonstrate a multiplexing strategy to simultaneously record the
temporal availability of three metabolites (copper, trehalose, and fucose) in the
environment of a cell population over time. This work enables the temporal measurement
of dynamic cellular states and environmental changes and suggests new applications
for chronicling biological events on a large scale.

D
NA is the primary information storage
medium in living organisms and can be
used in synthetic cellular memory devices
that convert biological signals into heri-
table changes in nucleotide sequences. For

example, approaches using recombinases (1–6),
single-stranded DNA recombineering (7 ), and
CRISPR-Cas9 (8–12) have been developed to re-
cord the level of a biological signal or to track
developmental lineage. However, a major out-
standing challenge has been the robust record-
ing of temporally varying biological states or
signals (e.g., gene expression or metabolite fluc-
tuations) in living cells. Such a biological record-
ing system would have powerful applications in
studying dynamic cellular processes, such as com-
plex regulatory programs, or in engineering “sen-
tinel” cells that track changing environmental
signals over time.
The bacterial CRISPR-Cas adaptation process

exemplifies a naturally occurring biological mem-
ory system. When foreign genetic elements such
as plasmids and phages invade a cell, short frag-
ments of these exogenous nucleic acids can be
captured by CRISPR-Cas adaptation proteins
and integrated into genomic CRISPR arrays as
spacers (13–15). This spacer acquisition process
occurs in a unidirectional manner; new spacers
are inserted at the 5′ of CRISPR arrays (16, 17)
and subsequently can be used by CRISPR-Cas
immunity proteins to repel invaders that exhibit
matching sequence identity (18). The DNA-writing
potential of the adaptation process was recently
applied to record the sequence and ordering
of chemically synthesized oligonucleotides that
were serially electroporated into cell populations
(19, 20). However, engineering the CRISPR-Cas

adaptation system to directly record biological sig-
nals and their temporal context, and not simply
sequence information of exogenous DNA, has
not been achieved to date.
A tape recorder converts temporal signals such

as analog audio into recordable data written onto
a tape substrate as it is passed at a set rate across
the recorder. Inspired by this temporal data stor-
age scheme (Fig. 1A), we set out to develop a
biological realization of the system, whichwe call
temporal recording in arrays by CRISPR expan-
sion (TRACE). In this framework, a biological
input signal is first transformed into a change in
the abundance of trigger DNAwithin living cells.
The CRISPR-Cas spacer acquisition machinery is
then used to record the amount of trigger DNA
into CRISPR arrays in a unidirectional manner
(Fig. 1B). Through this architecture, the presence
of an input signal increases the frequency of trig-
ger spacers incorporated into arrays, which con-
stitutes recording of the positive signal. However,
in the absence of a signal, reference spacers can
still be acquired into arrays at a background rate
from sources other than the trigger DNA, such as
the genome (21). These reference spacers serve
as pace-denoting markers that are embedded
during the recording session, akin to the physical
spacing on a tape substrate that represents time
intervals.
We first explored an approach to convert the

presence of a biological input into an increase
in the abundance of trigger DNA within a pop-
ulation of Escherichia coli cells. We used a copy
number–inducible trigger plasmid (pTrig), which
contained a mini-F origin for stable maintenance
and the phage P1 lytic replication protein RepL
placed downstream of the Lac promoter. In the
presence of the test input signal, isopropyl-b-D-
1-thiogalactopyranoside (IPTG), transcription from
the Lac promoter increases and results in expres-
sion of RepL. The RepL protein subsequently ini-
tiates plasmid replication from an origin located
within the RepL coding sequence (22), which in
turn increases pTrig copy number (Fig. 1C). Anal-

ysis of pTrig by quantitative polymerase chain
reaction (qPCR) revealed a 653 ± 5–fold increase
in copy number in cells induced with IPTG for
6 hours, compared with copy number in cells
with no induction (methods, Fig. 1D, and figs. S1
and S2). This demonstrates that a biological sig-
nal that elicits a transcriptional response can
be coupled to the alteration of an intracellular
DNA pool.
Next, we assessed whether an increase in pTrig

copy number could be recorded in CRISPR arrays
across a cell population. Expression of the CRISPR
adaptation proteins Cas1 and Cas2 promotes uni-
directional integration of ~33–base pair DNA
spacers into genomic CRISPR arrays in E. coli
(19, 21, 23). We constructed a recording plasmid
(pRec) that expresses Cas1 and Cas2 upon addi-
tion of anhydrotetracycline (aTc), which results
in spacer acquisition (Fig. 1E and fig. S3A). Cells
with pRec or with pRec and pTrig were induced
with aTc and with or without IPTG, and their
CRISPR arrays were assessed by sequencing to
determine the source of newly acquired spacers,
either from pRec, pTrig, or the genome (methods;
Fig. 1, F and G; and fig. S4). In cells with pRec,
spacers were preferentially derived from the
pRec plasmid, consistent with enriched spacer
acquisition from plasmids in E. coli documented
in the literature (21). Cells with pRec and pTrig,
but without IPTG induction, resulted in sim-
ilar spacer acquisitions and low pTrig spacer
incorporation (0.23 ± 0.06% of spacers). How-
ever, IPTG induction of pTrig increased overall
spacer acquisition (fig. S3B) and, more impor-
tantly, increased the percentage of pTrig-derived
spacers (32.4 ± 0.4% of spacers). This result
demonstrates that an induced increase in trig-
ger DNA abundance can be specifically recorded
in CRISPR arrays. We further explored different
input IPTG concentrations and observed an
increasing relationship between pTrig copy num-
ber and the resulting percentage of pTrig-
derived spacers (fig. S5). Although increased
pTrig spacer incorporation could be detected
after 4 hours of induction, robust recording was
best achieved when the signal persisted for at
least 6 hours (fig. S6).
Having assessed the two main components of

the system—(i) transformation of a biological sig-
nal to increase abundance of intracellular DNA
and (ii) capture of the amplified pool into CRISPR
arrays—we next tested whether TRACE could be
used to record biological signals in the temporal
domain. We performed a systematic time-course
recording experiment in which cells experienced
the presence or absence of IPTG across 4 se-
quential days, constituting 16 distinct temporal
signal profiles (Fig. 2A). Sequencing the resulting
CRISPR arrays confirmed an overall expansion
of arrays over time (fig. S7), with 24.7 ± 5.2% of
all arrays having incorporated at least one new
spacer by day 4. On average, about one in 15 ar-
rays acquired a new spacer each day. As expected,
arrays with increasing numbers of spacers were
detected with decreasing frequency across the
population (Fig. 2B). Because longer arrays con-
tained more temporal information, we additionally
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implemented a size enrichment protocol (methods)
that facilitated the analysis of arrays with up to five
new spacers (Fig. 2B).
For TRACE to function as a useful biological

tape recorder, the spacer identity (reference or
trigger) and orderingwithinCRISPRarrays should
correlate with the actual temporal signal profile.
We first noted that the system can act as a simple
signal counter by observing that the total per-
centage of pTrig spacers increased proportionally
with the number of times the signal was present
in the signal profile (Fig. 2C). Next, we analyzed
pTrig spacer incorporationandordering inCRISPR
arrays. For example, individual arrays from a sam-
ple receiving the IPTGprofile [on, on, off, off] were
variable but displayed an overall enrichment of
pTrig spacers at distal positions in the array (Fig. 2D
and fig. S8A). To visualize these incorporation
patterns across each of the 16 signal profiles, for
arrays of different lengths (L1 to L5), we calcu-
lated the population average of pTrig spacers at
each spacer position (Fig. 2, D andE, and fig. S8B).
These patterns of pTrig frequencies exhibited a
high degree of correspondence to their respective
temporal signal profiles when considered in re-
verse (i.e., oldest to newest acquired spacers;
Fig. 2F), which suggested the successful record-
ing of temporal biological signals.
To improve the interpretation of TRACE data,

we explored a method for accurate and automated
inference of the input temporal signal profiles
from recorded CRISPR arrays. We hypothesized
that the array expansion process could be mod-

eled to yield a useful classification scheme for
matching an observed pattern of arrays to its
corresponding signal profile. To test this ap-
proach, we first defined a cell population’s rep-
ertoire of CRISPR arrays as a distribution of
“array types.” Array types constitute all possible
array configurations across all array lengths with
either reference or trigger spacers occupying each
spacer position (Fig. 3A). We then developed a
simple analytical model of the CRISPR expan-
sion process for calculating the expected frequen-
cies for all array types given a signal profile
(methods). Only four constants are needed to
parameterize the model for each array length:
the rates of array expansion and pTrig incorpo-
ration per recording interval, in the presence or
absence of a signal (fig. S9 and table S5). Using
this model, we calculated the expected distribu-
tions of array types for all 16 temporal signal
profiles and compared these distributions of
array-type frequencies with those from experi-
mentally recorded arrays. The predicted and ob-
served array-type distributions matched closely
(fig. S10). For example, for two signal profiles with
an equal number of inductions but different tem-
poral ordering, our models yielded distinctive
array-type distributions that appeared to reca-
pitulate the corresponding experimental data
(Fig. 3B).
To quantitatively compare and classify the ob-

served data with model array-type distributions,
we calculated all pairwise Euclidean distances be-
tween them. An observed CRISPR array popula-

tion was assigned to the most probable signal
profile on the basis of the data-model pair with
the shortest Euclidean distance (Fig. 3C). Using
L1 arrays only, which do not contain any tem-
poral information, only five of 16 signal profiles
could be correctly classified. Using array types
L2 to L4 individually resulted in much higher
accuracy of assignments (13 to 14 of 16 correct).
When array types L2 to L4 were used together,
we could perfectly classify all 16 populations with
their correct temporal signal profiles (methods
and Fig. 3D). Only a few hundred arrays of a given
length, corresponding to minimum populations
of ~105 total arrays, were required to recapitulate
reasonable classification accuracy (fig. S11). This
demonstrates that temporal signals can be re-
corded and subsequently reconstructedwith high
accuracy from CRISPR arrays by using a simple
model of the expansion process.
Beyond simply assigning spacer identity as

reference or trigger, we hypothesized that spacer
sequences themselves may additionally contain
population lineage information, given the large
pool of potential spacers. In the time-course re-
cording experiment, cell populationswere experi-
mentally split into subpopulations eachday,which
resulted in a defined branching history of the 16
populations (Fig. 3E). By performing lineage re-
construction using a simplemetric to assess spacer
repertoire distance between populations (meth-
ods), we could reconstruct the entire experimen-
tal population lineagewith nearly perfect accuracy
(Fig. 3F).
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Fig. 1. Temporal recording in
arrays by CRISPR expansion
(TRACE). (A) Akin to an
audio tape, temporal
biological signals can
be stored in DNA arrays
within a cell population.
(B) TRACE functions
by first transforming an
input biological signal
to an altered abundance
of trigger DNA (orange).
This trigger DNA, alongside
reference DNA (blue), is
then recorded as spacers in
genomic CRISPR arrays
of a cell population in a
unidirectional fashion,
enabling capture of temporal
information. (C) The pTrig
trigger plasmid includes
a mini-F origin for stable
maintenance and an
IPTG-inducible phage P1
replication system for copy
number increase. PLac,
Lac promoter. (D) qPCR
measurement of pTrig relative copy number (log10 scale) in cells
exposed to no IPTG or 1 mM IPTG for 6 hours. (E) The pRec recording
plasmid includes an aTc-inducible E. coli Cas1 and Cas2 expression
cassette. (F) Experimental induction scheme and CRISPR array sequencing
approach. (o/n, overnight). (G) Cells with pRec or with pRec and pTrig

were exposed to 100 ng/mL aTc and no or 1 mM IPTG and subjected
to sequencing; resulting arrays with a single new spacer and identified
source (genome, pRec, or pTrig) are plotted as a percentage of all
measured CRISPR arrays. Error bars represent standard deviation of
three biological replicates.

0

5

10

15

%
 a

rr
ay

s

0.23 ±0.06< 0.1< 0.1

% pTrig spacers:

pRec pRec + pTrig
IPTG - + - +

strain:

source: genome pRec pTrig

32.4 ±0.4

pRec (recording plasmid)

trigger DNA reference DNA

Cas1
Cas2

genome

plasmid

1. transform signal to DNA abundance

2. write DNA to genomic CRISPR array

unidirectional
spacer acquisition

no
copy inducible plasmid

signal

biological tape

temporal signal in cell 
population arrays

audio tape

temporal signal
in tape substrate

pTrig (trigger plasmid)

inducible

repL

PLac oriLmini-F

mini-F

low copy
basal state

copy increase

IPTG

repL cas1 cas2
PLTetO-1

aTc

cell
population

induce &
record (6h)

native spacers

1 13leader

new spacersdirect repeat

CRISPR array sequencing

recover (o/n)

+aTc/IPTG

0

1

2

3

lo
g1

0 
re

l. 
co

py
 n

um
be

r

IPTG - +

signal

RESEARCH | REPORT
on D

ecem
ber 19, 2017

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


Sheth et al., Science 358, 1457–1461 (2017) 15 December 2017 3 of 5

Fig. 2. Temporal recording
of 4-day input profiles. (A) Cell
populations were subjected to daily
exposures over 4 sequential days
(d1 to d4), constituting all
16 possible temporal signal
profiles. (B) Resulting CRISPR
arrays were sequenced with (black)
and without (gray) a size-enrichment
method. The frequencies (log10
scale) of unexpanded (un) and
expanded arrays of different
lengths (L1 to maximum detectable
L5) are plotted. (C) Input profiles
are grouped by number of pTrig
inductions, and the percentage of
pTrig spacers in each profile is
displayed; red lines indicate means
and standard deviations. (D) On
the left, 50 L4 arrays sampled from
the full data set for the input profile
[on, on, off, off] are shown (shaded,
pTrig spacer; unshaded, reference
spacer; positions p1 to p4, 5′-to-3′ of
array). Spacer incorporation can be
analyzed across arrays of different
lengths (L) and positions (p) as a
heatmap displaying percentages
of pTrig spacers detected at
each location (right). (E) CRISPR
arrays derived from recordings
of all 16 temporal signal profiles.
(F) The input signal profile (left)
and corresponding L4 arrays (right,
shown in reverse order to aid visual
comparison) are displayed.
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Fig. 3. Reconstructing temporal signal
profiles and population lineages.
(A) CRISPR array populations can
be described as a frequency distribution
consisting of all permutations of reference
(R, blue) and trigger (T, orange) spacers
for a given array length (L); L3 arrays are
depicted. (B) As an example, for two distinct
profiles with an equal number of inductions,
observed (black) and model-predicted
(white) L3 array-type frequencies are
plotted; L3 positional averages are shown
for reference (inset). (C) Euclidean distances
between observed (rows) and model-
predicted (columns) array-type distributions
were calculated and normalized by row
(L2, L3, and L4 array-type distributions are
concatenated). The correct temporal signal
profiles are indicated by white asterisks, and
the models with minimum distance to the
observed data are indicated by black
outlines. (D) Number of profiles correctly
classified using arrays L1 to L4 individually or
arrays L2 to L4 together as in (C); the gray dashed line indicates the
expected random classification (one of 16 correct). (E) A defined
branching history was used in the temporal recording experiment.
(F) The mapping locations for genomic spacers within L1 arrays were
used as the sequence identity of the spacer. The Jaccard distances

between all samples (1 minus the proportion of spacers shared between
two samples) are displayed. Lineage reconstruction was performed
using the Fitch-Margoliash method on this distance matrix and is
displayed on the left; only one lineage is not fully differentiated (cells
receiving induction on d1).
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To further characterize the recording per-
formance of TRACE, we assessed the stability of
stored information and the potential for longer-
term recordings. Propagation of recordings stored
within cell populations over 8 days (~50 gener-
ations) did not appear to alter array-type dis-
tributions (fig. S12, A and B), and induction of
recording showed negligible loss of previously
acquired spacers (fig. S12C). These results dem-
onstrate stable data storage. We repeated record-
ing experiments on selected temporal signal
profiles for 10 days, which showed reasonable
reconstruction accuracy up to 6 days (four of
seven correctly classified; fig. S13). In general, lon-
ger arrays increased the accuracy of signal profile
reconstruction during longer recording sessions,
which suggests that longer-read sequencing may
further increase the performance of long-term
recording analysis.
Last, we explored the possibility of using TRACE

formultichannel temporal recording.We devised
a multiplexing strategy wherein various pTrig
sensor systems could be associatedwith uniquely
barcoded CRISPR arrayswithin a cell population

(Fig. 4A). Specifically, we chose to mutagenize
the 3′ direct repeat (DR) sequence, which should
not affect spacer integration (24), as a barcode.
This allowed for multiplexing with no modifica-
tion to the sequencing protocol. More impor-
tantly, this enabled more stringent calling of
barcodes because the DR sequence is duplicated
during each spacer incorporation event (23, 25).
Using MAGE [multiplex automated genome en-
gineering (26 )], we generated strains with new
genomicDRbarcodes. In distinct barcoded strains,
we coupled different sensors to pTrig and screened
their performance (fig. S14). Three orthogonal and
robust biosensors that detected the biologically
meaningful chemicals copper (heavy-metal con-
taminant), trehalose (dietary sugar metabolite),
and fucose [associated with mammalian gut in-
fection (27)]were selected formultiplex recording
experiments. To assess the capacity for multi-
channel recording, we exposed cell populations
containing a mix of all three strains to all eight
combinations of the three input chemicals. The
resulting CRISPR arrays were sequenced and
demultiplexed using the DR barcodes. Each sen-

sor strain displayed a robust increase in pTrig-
derived spacers (>24-fold) only in the presence
of their cognate input (Fig. 4B and fig. S15). Im-
portantly, these results indicate modular com-
patibility of TRACE for multichannel recording
with a variety of sensing systems, including en-
gineered sensors or native promoters with en-
dogenous transcription factor expression.
To explore multiplex temporal recording, we

used the three-strain sensing system to perform
a time-course exposure experiment over 3 days.
Cell populations were exposed to 16 selected tem-
poral signal profiles of 512 possible profiles, and
resulting CRISPR arrays were sequenced. Sensor
strains fluctuated in their final abundance but
were maintained at sufficient levels to enable
CRISPR array analysis (fig. S16). We parameter-
ized models for each sensor individually as be-
fore and inferred the exposure history of each of
the three inputs individually for all 16 popula-
tions by classification against model predictions
(Fig. 4C). We were able to correctly classify 14,
13, and 12 of the 16 signal profiles for the cop-
per, trehalose, and fucose sensors, respectively
(Fig. 4, D and E). Classification accuracy for all
three inputs simultaneously was assessed by the
Hamming distance threshold to the actual tem-
poral signal profiles; eight of 16 profiles were
perfectly classified, and the rest were within a
Hamming distance of 2 (Fig. 4F), implying that
even incorrect predictions were close to actual
signal profiles. Together, these results demon-
strate accurate multichannel recording with the
TRACE system.
Our work enables new applications in bio-

logical recording. TRACE could be used to record
metabolite fluctuations, gene expression changes,
and lineage-associated information across cell
populations in difficult-to-study habitats, such
as themammalian gut, or in open settings, such as
soil ormarine environments. Applying inducible
intracellularDNAproduction systems in parallel
(28) and other CRISPR-Cas adaptationmachinery
(13, 29) could extend our system to other bacteria
(or even eukaryotes) and increase the temporal
resolution of recording beyond the levels demon-
strated here (6 hours, ~45 mHz). The system could
be further optimized by increasing the spacer in-
corporation rate (30), increasing the sequencing
length (e.g., by nanopore sequencing), and im-
proving reconstructionalgorithms.These advances
could further facilitate biological recording of in-
puts across many signal channels, with higher
temporal resolution, and in smaller populations,
possibly down to single cells. TRACE and future
strategies for massively parallel recording of
biological states should greatly advance our
ability to delineate and understand complex
cellular processes across time.
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