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DNA is a ubiquitous molecule in biology that stores life’s 
heritable information. In the digital era, DNA is also poised 
to become a next-generation universal data medium1 

because of its high-density storage capacity (petabytes per gram)2, 
long-term stability (even in harsh environments; half-life of >500 
years)3 and low risk of technical obsolescence due to the expand-
ing interest in DNA4. Data storage in DNA has progressed techno-
logically over the past decade4, as strategies to physically isolate and 
selectively access portions of the stored data5,6 as well as algorithmic 
advances to optimize data encoding and retrieval2,7 have greatly 
improved the scalability and practicality of DNA information 
storage. However, current DNA-based data-storage methods still 
rely mainly on in  vitro iterative chemical or enzymatic synthesis  
of DNA strands4,8.

At the same time, recent advances in CRISPR (clustered regu-
larly interspaced short palindromic repeats) and recombinase tech-
nologies have led to the development of numerous DNA-based 
cellular recording systems to interrogate various biological pro-
cesses9,10, such as lineage tracing for organismal development11–13 
and real-time recording of horizontal gene transfer events14. These 
cellular data recorders offer the capacity to measure biologically rel-
evant signals15–19 in places that are otherwise difficult to access, such 
as inside the body20,21, and over time22. Furthermore, the stored data 
in DNA can be coupled to gene regulation to directly report cel-
lular states23 or control cellular logic operations24. These excellent 
features and the inherent compatibility of DNA-based data storage 
with biological systems have suggested the potential use of living 
cells as a physical medium for data in DNA to provide more pro-
tection (for example, in radiation- and heat-resistant spores) and 
enable facile data duplication and amplification (via cell growth 
and replication)4,10. However, such in vivo data storage approaches 
largely build on in vitro synthesized DNA strands25,26 due to the lim-
ited capacity to manipulate DNA sequences directly in vivo4. This 
challenge motivates the exploration of easy and scalable transmis-
sion of digital data into biological systems (direct encoding) and 
back (decoding by sequencing).

Direct information exchange between electronics and biology 
has tremendous potential to transform our ability to analyze, store 
and communicate information27–29. The classic example is the direct 
electrical simulation or recording of neurons via ionic potentials 
and currents27. Beyond ionic potentials, the reduction–oxidation 
(redox) state of a cell, which is involved in a wide range of biologi-
cal processes, is also amenable to physiological measurement and 
perturbation with electronic devices. Recently, redox-responsive 
biomolecules such as phenazines have been used in several electro-
chemical strategies to interrogate a range of biological activities30,31 
and to control gene expression in living cells32,33, where the redox 
status of the biomolecules could be measured or manipulated by 
application of electronic potentials. In theory, these approaches 
could also be used for direct electrochemical encoding of data into 
DNA in living cells. In practice, however, the utility of such in vivo 
DNA recording systems depends heavily on the efficiency, robust-
ness and scalability of the underlying electrogenetic circuits, which 
may require extensive engineering and optimization.

Here, we describe a scalable and direct strategy—‘data recording 
in vivo by electrical stimulation’ (DRIVES)—to encode digital data 
into the genomes of living cells without the need to synthesize DNA 
in vitro (Fig. 1a). By using electrical signals to tune redox biomol-
ecules and sensors in cells, our framework enables the direct transfer 
of digital data from a computer to living cells. With a CRISPR-based 
DNA recorder, we applied this approach to write all possible states of 
a 3-bit binary data stream into living cells, which can be multiplexed 
to store larger amounts of information by barcoding cell populations. 
Data stored in these ‘living hard drives’ are stably maintained and 
effectively protected—over multiple cell generations—from exter-
nal environments where naked DNA would otherwise be degraded. 
This study provides a foundation to further advance in vivo DNA 
data storage and direct communication with living cells.

Results
Development of a cellular electrogenetic DNA writer. Previously, 
we have described a directional DNA writing system using CRISPR 
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spacer acquisition to record user-defined signals in bacteria  
(Fig. 1b)22. We sought to build on this system for its directional fea-
ture in writing information and its capabilities of temporal record-
ing and multiplexing for scaling. To directly couple an electrical 
signal for biological recognition, we explored the use of redox mol-
ecules and a redox-responsive SoxRS regulon33 to convert the cell’s 
electrochemical state into a change in gene expression (Extended 
Data Fig. 1a), thus coupling the copy number of the plasmid to 
oxidative stress. Oxidative stress in the cells could then be induced 
with phenazine methosulfate (PMS) in a dose-dependent man-
ner (Extended Data Fig. 1b). We further tested ferri/ferrocyanide  
(oxidized, FCN(O); reduced, FCN(R)) as an alternate electron 
acceptor and used anaerobic growth conditions to exclude the 
interference of oxygen to improve control of the redox conditions 
(Extended Data Fig. 1c)33.

To parallelize electrochemical modulation across multiple cell 
populations, we constructed a 24-chamber electrochemical redox 
controller that independently delivers a digital electrical pulse (off, 
0 V; on, +0.5 V) to each chamber (Methods and Extended Data Fig. 2). 
After optimization of the experimental conditions, including inducer 
concentrations and induction time (Extended Data Fig. 1d–g), we 
could robustly modulate cell populations using an electrical signal 
to induce a pTrig change. In state 0, the absence of a voltage signal 
keeps FCN(R) reduced, and therefore the pTrig copy number low. In 
state 1, a +0.5-V signal oxidizes FCN(R) and PMS, which activates 
the soxS promoter to increase the pTrig copy number (Fig. 1c). We 
observed that the pTrig copy number increased by more than 400-fold 

in the presence of the +0.5-V signal (Fig. 1d). Accordingly, newly 
acquired spacers derived from pTrig were 34 times more prevalent in 
response to the signal than without, increasing from 0.038(±0.004)% 
to 1.28(±0.03)% among all arrays in the cell populations (Fig. 1e). 
Examining the source of newly acquired spacers revealed consistent 
spacer acquisition across genomic and plasmids regions at each state 
(Supplementary Fig. 1). These results demonstrate that DRIVES can 
be wired for direct digital-to-biological encoding in living cells using 
electronic signals mediated through redox molecules.

Direct encoding of 3-bit digital data into CRISPR arrays. Because 
spacer acquisition mostly occurs unidirectionally at the 5′ position 
of the expanding CRISPR array, temporal biological events can be 
recorded over time22. We therefore explored the use of temporal 
signal induction to encode digital data containing multiple bits 
in DRIVES as a way to increase the data-storage capacity of a cell 
population. To scale from 1 bit to 3 bits, we performed an encod-
ing experiment in which cells were exposed to different electrical 
signal profiles over three sequential rounds, testing all eight pos-
sible binary induction combinations (Fig. 2a and Extended Data 
Fig. 3a,b). The pTrig copy number profiles correlated strongly 
with the 3-bit binary input profiles associated with each cell popu-
lation (Fig. 2b and Extended Data Fig. 3c). We also observed an 
increase in CRISPR array expansion over the course of the experi-
ment (Extended Data Fig. 3d) and an increase in the proportion of 
pTrig-derived spacers as a function of number of electronic signals 
(Extended Data Fig. 3e).
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Fig. 1 | Direct digital-to-biological data storage into CRiSPR arrays. a, Digital information can be directly encoded into CRISPR arrays of a bacterial 
population using electronic signals. The cell population can then be archived for long-term storage, propagated for data amplification and sequenced 
for data retrieval. b, Overexpression of the Cas1–Cas2 complex results in constant incorporation of new spacers into CRISPR arrays of a cell population. 
Electronic signals induce a change in abundance of a copy-number-inducible plasmid (pTrig) and thus the proportion of pTrig-derived spacers. c, At the 
0 state, the electrical signal is not applied (0.0 V) to keep FCN(R) and PMS reduced and the pTrig copy number is low. At the 1 state, the electrical signal 
(0.5 V) oxidizes FCN(R) and PMS, activating the soxS promoter to increase the pTrig copy number. FCN(R), ferrocyanide; FCN(O), ferricyanide; PMS, 
phenazine methosulfate. d,e, The relative copy number of pTrig (d) and the proportion of expanded CRISPR arrays and source of the new spacers (e) 
without (0 V) and with (0.5 V) electrical signal for 14 h. Ref, genome- and pRec-derived spacers; pTrig, pTrig-derived spacers. All measurements are based 
on three biological replicates. Error bars represent the s.d. of three biological replicates.
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To better delineate the data structure of the eight different 3-bit 
binary data stored in DRIVES, we enriched longer arrays containing 
more temporal information (Extended Data Fig. 3f) and categorized 
the observed individual CRISPR arrays in a cell population as a dis-
tribution of array types consisting of either reference (genome- or 
pRec-derived) or trigger (pTrig-derived) spacers at each positions 
of an observed array length22 (Methods and Fig. 2c,d). We inves-
tigated whether these array-type frequencies could differentiate 
between different input signal profiles of different cell population by 
clustering the normalized array-type frequencies (Fig. 2e). Principal 
component analysis (PCA) on the array-type frequencies revealed 
eight distinct clusters that differentiated the 3-bit binary data pro-
files from each other, although there were some overlaps between 
the clusters (Extended Data Fig. 3g). Application of our previous 
classification approach22 using the Euclidean distance between 
observed and predicted (or reference) array-type frequencies failed 

to return reliable classification results (64.6%) on the test datasets 
(Supplementary Fig. 2). We suspect that the minimal medium con-
tributed to a weaker pTrig copy number induction and thus a lower 
array expansion efficiency with pTrig-derived spacers. In turn, the 
array-type frequencies are more biased towards ‘R’, ‘RR’ and ‘RRR’, 
which limited the ability of other array types to contribute to the 
Euclidean distance metric (Supplementary Fig. 2a). On the other 
hand, a supervised learning approach might better account for these 
limitations as well as pleiotropic host responses induced by strong 
redox stress from electrical stimulations that may introduce vari-
ability across datasets34 (Extended Data Fig. 3g).

To leverage the unique patterns of the array-type frequencies, 
we therefore built classifiers to distinguish the observed CRISPR 
array data to predict the initial signal profile. From three indepen-
dent experiments that measured all 3-bit profiles, we first trained 
a random forest classifier on two randomly selected datasets and 
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Fig. 2 | encoding 3-bit binary data into Escherichia coli populations. a, Cells were subjected to electrical signals over three sequential rounds, constituting 
all eight possible 3-bit binary data profiles. b, pTrig copy number profiles for each round of the 3-bit binary data profiles. c, CRISPR array populations 
can be described as a frequency distribution constituting of all permutations of reference spacers (R, grey) derived from the genome or pRec and trigger 
spacers (T, red) derived from pTrig for a given array length (L). d, Frequencies of array types in log10 scale for each array lengths for the 3-bit data-encoded 
CRISPR array populations. e, Clustering CRISPR arrays based on their array-type frequency profiles normalized to Z-score across all 3-bit binary profiles. 
f, Performance of a random forest classifier trained on data from three independent experiments and tested on data from six subsequent independent 
experiments. For classification of each sample, an average of 172,788 total sequencing reads with 89,928 reads of expanded arrays (or 38,295 of L2/L3 
arrays) that uniquely map spacers were used. Bead-based size enrichment was performed to enrich for expanded arrays and deplete unexpanded arrays 
(Methods). All measurements are based on three or more biological replicates. Error bars represent the s.d. of three biological replicates.
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tested the model performance on the left-out dataset using L2 and 
L3 array types. This initial model yielded an accuracy of 87.5% in 
profile classification (compared to 12.5% by chance) with 10 itera-
tions of repeated random-subsampling and validation (Extended 
Data Fig. 4a). Encouraged by these initial classification results, 
we then retrained the model on all three datasets and then tested 
its performance on newly acquired datasets from six additional 
independent experiments. This model produced 93.75% accuracy  
(45 correct classifications out of 48 tested samples) (Fig. 2f), with the 
‘TRT’ array-type frequency as the leading feature for classification 
(Extended Data Fig. 4b). Approximately 10,000 expanded arrays 
with uniquely mapping spacers (with ~4,000 L2/L3 arrays) from 
~17,000 sequencing reads on size-enriched arrays were sufficient to 
achieve reasonable classification accuracy (that is, >90%; Extended 
Data Fig. 4c). The number of reads corresponds to ~200,000 cells in 
the original data-encoded cell population. Using more datasets for 
training marginally improved the model performance (Extended 
Data Fig. 4d). Taken together, these results demonstrate that 
multi-bit digital data can be stored in electrogenetically actuated 
CRISPR arrays and the resulting array-type frequencies can be used 
to recover the stored data from the population.

Scaling data-storage capacity with barcoded arrays. To further 
extend the data-storage capacity of DRIVES, we sought to devise a 
multiplexing strategy to write larger-sized binary data across multi-
ple barcoded cell populations in parallel (Fig. 3a). We first generated 
a library of CRISPR arrays by mutagenizing the distal 8-bp region 
of the first direct repeat (DR) sequence (Extended Data Fig. 5a), 
where we previously showed CRISPR arrays could be barcoded22. 
However, many of the DR variants (72%) exhibited notably lower 
spacer acquisition rates (that is, 50% less than that of wild-type DR; 
Extended Data Fig. 5b–d), probably due to disrupted interactions 
between the Cas1–Cas2 complex and the inverted repeats within 
the first DR sequence at the barcoded region35. We then explored 
introducing the 8-bp barcode downstream of the first spacer in 
the CRISPR array. Encouragingly, spacer acquisition efficiencies 
were consistently high across 24 unique spacer-barcoded variants 
(Extended Data Fig. 5b,c and Supplementary Table 1). We further 
assessed CRISPR array expansion for different barcoded cells either 
individually or as a mixed pool and confirmed that pooling barcoded 
populations does not significantly affect CRISPR expansion mea-
surements in a multiplex format (Extended Data Fig. 5e). Notably, 
the pooled arrays could be demultiplexed easily into their associ-
ated barcodes through a streamlined Illumina sequencing pipeline 
that uses each barcode also as a sample index. Barcoding the down-
stream region of the first spacer also enabled targeted extraction of 
encoded data belonging to specific barcodes from a mixed popula-
tion (Supplementary Fig. 3), which was not possible in the previous 
DR barcoding approach. In addition, we performed projections on 
the scale of DRIVES as a function of Cas1–Cas2 activity, the num-
ber of barcodes and sampling depth (Extended Data Fig. 6). These 
results demonstrate that this new barcoding strategy can yield active 
CRISPR array variants with high spacer acquisition efficiencies that 
can be pooled, thus providing a foundation to scale up DRIVES.

Accurate encoding of text directly into living cells. Having estab-
lished a robust strategy to expand the data storage capacity of 
DRIVES, we then set out to test the encoding of meaningful infor-
mation (for example, a text message) into living cells. To transform 
text messages into binary code, we utilized an encoding strategy 
where each ‘byte’ maps to a 6-bit character code (for 26 or 64 pos-
sible characters) built from two concatenated 3-bit data units over 
two barcoded cell populations (Fig. 3b). Because our classifier per-
formance was not equal across all 3-bit data profiles (Fig. 2f and 
Extended Data Fig. 7a), we examined different encoding schemes to 
optimize character-to-byte mapping (Extended Data Fig. 7b). Two 

schemes were explored: (1) the classic DEC 6-bit encoding table for 
64 basic ASCII characters and (2) an optimized (OPT) 6-bit encod-
ing table, designed to take into account the letter usage frequency36 
and classifier decoding performance bias. In the OPT encoding 
scheme, more frequently used characters (based on letter frequency 
in English text) are assigned to 6-bit bytes with higher decoding 
performance (Extended Data Fig. 7c). Therefore, OPT encoding 
was expected to generally outperform DEC encoding for text mes-
sages (Extended Data Fig. 7d).

To test the performance of these encoding schemes, we encoded 
a 12-byte text message, ‘hello world!’, using either the DEC or OPT 
table, directly into E. coli cells. For each encoding experiment, the 
text was split into 12 individual 6-bit characters, with each assigned 
to two barcoded cell populations holding 3-bit data each (Fig. 3b). 
All 24 barcoded populations were temporally induced with their 
assigned 3-bit signals in parallel on the multi-channel electrochemi-
cal redox controller set-up (Extended Data Fig. 2). During the course 
of encoding, pTrig copy number profiles exactly matched the binary 
input profiles for each barcoded population (Fig. 3c). On completion 
of encoding, the resulting 24 cell populations were pooled and stored 
at −80 °C as a glycerol stock for subsequent analysis by sequenc-
ing. From the sequenced spacers, we determined the array-type 
frequency profiles from these barcoded populations, which were 
then classified using our pre-trained random forest model (Fig. 2). 
Decoding the data from OPT-encoded cells successfully returned the 
original message ‘hello world!’ (Fig. 3c). On the other hand, decod-
ing from DEC-encoded cells returned ‘xello world!’, due to mis-
classification of the first 3-bit ‘101’ as ‘111’ (Supplementary Fig. 4).  
We further examined how the data recovery rate depended on the 
amount of sequencing reads. For the OPT-encoded data, only 1,600 
expanded arrays with uniquely mapping spacers for each barcoded 
cell population (with ~1,000 L2/L3 arrays) from ~2,600 sequencing 
reads on size-enriched arrays were sufficient to correctly classify 
~98% of the 72 bits in the data (Extended Data Fig. 8).

Even with OPT encoding, where errors are intentionally sup-
pressed toward the least frequently used characters (bottom 14%), 
this encoding scheme can still suffer from non-negligible error 
rates (average 12.13%; Extended Data Fig. 7c). As shown with the 
DEC-encoded example, a single-bit error can drastically deteriorate 
message outcome (Supplementary Fig. 4). To address this short-
coming, we next implemented an error correction strategy using a 
simple parity check. Given that the last bit of the binary data (gener-
ated most recently in the CRISPR array) is always the most reliable 
for classification, we utilized the last bit of every 6 bits as a check-
sum for the previous 5 bits (Fig. 2f and Extended Data Fig. 9a,b). 
After initial classification of an input, the error correction pipeline 
counts the number of ‘1’ in the first five classified bits and then 
expects ‘0’ or ‘1’ for a checksum value at the sixth bit based on the 
counts (Extended Data Fig. 9c and Supplementary Table 2). When 
the classified checksum value does not match the expected value, 
the classifier flags that an error has occurred during classification 
of the character and the error is then corrected based on the clas-
sifier’s confusion probability. With this error correction pipeline 
(OPT2), we can only encode up to 32 curated characters, but with 
significantly higher data reconstruction performance (Extended 
Data Fig. 9d,e). We encoded the text ‘synbio@cu’ using the OPT2 
encoding/decoding pipeline into cells and found that 2 out of 54 
bits were initially misclassified, but the errors were detected and 
successfully corrected to return the input message (Extended Data 
Fig. 9f). Although error correction is still imperfect, the OPT2 strat-
egy significantly reduces error rates to 0.79%, on average. Together, 
these results demonstrate the ability to encode and store meaning-
ful amounts of information directly into living cells using electri-
cal stimulation alone, and show that careful design of information 
encoding and error-correction strategies can significantly improve 
the reconstruction accuracy of stored data.
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Stability of data in replicating cells. Mutations during DNA repli-
cation, genomic recombination or changes in cellular fitness could 
all, in theory, compromise the fidelity of DNA-based data storage 

in cells. We expect the E. coli BL21 genomic CRISPR arrays (where 
data are stored) to have neutral cellular fitness because the CRISPR 
interference machineries are absent and we have previously shown 
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that the spacers in CRISPR arrays are stable over 50 generations22. 
Nevertheless, the non-negligible off-target spacer integration rates 
of the Cas1–Cas2 complex37 and the continuous growth of the 
pooled population may lead to subtle changes in subpopulations 
that become magnified over time to a level at which they may affect 
data recovery. To assess the stability of stored digital information 
within an actively dividing bacterial population, we propagated a 
cell population containing the OPT-encoded data ‘hello world!’ for 
over 16 days (~100 generations) and sampled the population at mul-
tiple time points throughout (Extended Data Fig. 10). Although data 
retrieval efficiency gradually decreased with increasing population 
generations, we found that the data could still be robustly decoded 
with >90% accuracy from the population for ~80 generations. The 
drop in data retrieval efficiency is probably due to fluctuations in 
the population, because the relative abundance of the 24 barcoded 
subpopulations was stable for ~60 generations before a notable 
change was observed, suggesting adaptive mutations with fitness 
effects arising in some of the subpopulation. We further tracked the 
population in higher resolution using array-type frequencies within 
each of the barcoded cell populations where encoded information is 
embedded (Supplementary Fig. 5). Although 15 out of 24 barcoded 
cell populations (62.5%) in the pool stably maintained the data, the 
array-type frequencies within the remaining nine barcoded popula-
tions gradually shifted, losing their initially encoded information 
over time. Nevertheless, a >90% accuracy achieved over ~80 gen-
erations highlights that data with 72 bits encoded in living cells can 
be exponentially and autonomously amplified over 80 iterations to 
yield ~1.2 × 1024 (280) times more physical copies that can still be 
robustly decoded.

Integrity of data in natural open environments. The stabil-
ity and accessibility of DNA are key advantages in data storage4. 
However, there has been limited direct assessment of the fidelity 
of DNA-based digital information stored in open natural environ-
ments, where DNA encounter various degradative factors includ-
ing DNase enzymes, microorganisms, ultraviolet (UV) light and 
chemical mutagens (Fig. 4a). To investigate the integrity of data 
stored in cells in a natural environment, we took a cell population 
that encoded a text ‘synbio@cu’ with 54 bits using OPT2 (Extended 

Data Fig. 9) and challenged it to commercially purchased organic 
potting soil at concentrations of 107–109 cells per 100 mg of soil. 
Encouragingly, we could retrieve up to 90% of the data from the 
data-encoded cells in soil at the highest spike-in ratio (82% of the 
mixed soil microbial community). However, the decoding accuracy 
decreased when lower proportions of data-encoded cells were pres-
ent in the mixed community, probably due to missing data from 
rare array types (Fig. 4b). To address this, we selectively grew the 
data-encoded subpopulation from the mixed soil microbial com-
munity using lysogeny broth (LB) medium supplemented with 
kanamycin and chloramphenicol, to which data-encoded cells are 
resistant. Efficient enrichment of data-encoded cells yielded >90% 
accuracy in data reconstruction for spike-in ratios as low as 7%. We 
further assessed the stability of the data either in cells or in naked 
DNA in soil over time. In contrast to naked DNA added directly 
to soil, where most of the data degraded during a six-day incuba-
tion period, data stored in cells were robustly protected and could 
be decoded without any loss of information (Fig. 4c). In addition, 
beyond the intrinsic layers of data security used to protect the 
information embedded within cells (for example, CRISPR array 
locus, encoding table and so on), we further envisioned the utility 
of camouflaging encoded data in a natural microbial community 
with vast biodiversity and sequence complexity. Metagenomic 16S 
rRNA sequencing of the mixed soil microbiome revealed diverse 
taxa (4,083 operational taxonomic unit (OTUs)), including the 
data-encoded Escherichia/Shigella genus (Supplementary Fig. 6). 
Natural soil communities with and without hidden data-encoded E. 
coli cells (4% spike-in ratio) showed highly similar microbial com-
positions, with Pearson’s r > 0.8 (Fig. 4d), supporting the idea of data 
concealment in an open setting. Together, these results highlight the 
relevance of data storage in living cells for protection from natural 
environments and future steganographic approaches for embedding 
synthetic data in complex microbiomes.

Discussion
DNA has great potential to become a next-generation data-storage 
medium. Although recent DNA-storage efforts have advanced 
nucleic acid synthesis, manipulation and sequencing methods, we 
focused in this study on developing an all in  vivo framework for 
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digital-to-biological data encoding directly into the genomes of liv-
ing cells in a single step. We demonstrated scaling of the data storage 
capacity of DRIVES in two different dimensions: (1) binary data 
in units of multiple bits by using temporal electronic signals (that 
is, from 1 bit to 3 bits, with eight possible states) and (2) multiplex 
encoding across many barcoded cell populations (that is, from 3 bits 
to 72 bits, with 272 possible states). These strategies can be applied 
to directly write text messages and the stored data can be reliably 
recovered and physically amplified through multi-generational 
growth. Furthermore, data can be hidden within a natural microbial 
community to enable an additional layer of data security by obscu-
rity. Finally, digital data encoded in the genomes of living cells are 
protected from harsh natural environments where raw DNA would 
otherwise be damaged or degraded.

With sufficient sequencing depth and read lengths, the data stor-
age capacity in a cell population is, in principle, governed by the 
CRISPR array expansion efficiency, the number of barcodes and the 
population size, and will require further advancements for practi-
cal utility (Extended Data Fig. 6). We chose to use a 3-bit storage 
unit per barcoded cell population in this study, due mostly to a low 
abundance (0.173 ± 0.065%) of L3 arrays after three rounds of tem-
poral signal induction. In theory, these rare cells with longer CRISPR 
arrays contain the most amount of temporal information, but would 
require larger population sizes to generate at sufficient levels and 
with deeper sequencing coverages (or amplicon size enrichment) 
for reliable data reconstruction. The current data storage capacity 
of DRIVES if scaled suggests that more than 5,000 barcoded cell 
populations could, in theory, be pooled and decoded using a single 
Illumina MiSeq sequencing run (Extended Data Fig. 8). Data stor-
age with thousands of barcoded cell populations will require more 
sophisticated design of multiplexed electrochemical induction 
set-ups that leverage microplate, on-chip or microfluidic formats30,38. 
Other multiplexable induction modalities such as with light or by 
acoustics could further increase encoding channel capacity across 
cell populations39,40. We anticipate that improving the CRISPR spacer 
acquisition system will enable encoding with higher bit units, a faster 
rate of encoding and better reconstruction from a smaller cell pop-
ulation size. Metagenomic mining of Cas1–Cas2 orthologs41 and 
directed evolution42,43 to improve the CRISPR adaptation machinery 
or other related host factors are promising paths. Other CRISPR-Cas 
systems with shorter spacer and DR would enable more compact and 
denser data storage in CRISPR arrays44. Employing more efficient 
size-enrichment methods and long-read sequencing technologies to 
decode longer arrays would also improve the overall approach.

Although data-encoded cells could be passaged for over 80 cell 
generations and still allow robust data recovery at >90% accuracy, 
we observed mutations arising over time that altered the rela-
tive abundance of subpopulations, which led to loss of some array 
types and deterioration of data fidelity. Engineering host strains 
with lower mutation rates or other biocontainment strategies could 
reduce these undesired outcomes45,46. Reducing batch-to-batch 
variability induced by redox-translated electronic signals could 
improve the reliability of data recovery34. Lyophilization or use of 
spore-forming bacteria could also extend shelf-life for long-term 
DNA-based data storage47. This digital-to-biological data storage 
framework could be applied to other microbial systems with unique 
properties such as native electroactivity48, fast growth49 or extremo-
tolerance50. We anticipate that the technical advances described here 
can provide a foundation for higher-performance DNA-based cel-
lular memory devices used not only in digital data storage but also 
in other biological recording applications.
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Methods
Electrochemical set-up. The electrochemical set-up was based on the work in ref. 
33, with minor modifications (Extended Data Fig. 2). Briefly, 12-cm-long platinum 
wires (0.5-mm diameter, 99.99% purity) were wound and used for both working 
and counter electrodes. For agar salt bridges, 12-cm clear PVC tubings (2-mm 
inner diameter, 4-mm outer diameter) were filled with heated 3% agar with 1 M 
KCl solution and stored in 3 M KCl at 4 °C. A typical electrochemical set-up 
procedure for FCN(R/O) conversion and encoding experiments was performed as 
follows: the working electrode was placed in a 2-ml tube (working chamber) with 
1.5 ml of M9 minimal medium supplemented with 100 ng ml−1 anhydrotetracycline 
(aTc), 1.56 mM ferrocyanide (FCN(R), reduced), 100 μM phenazine methosulfate 
(PMS), 20 μg ml−1 chloramphenicol and 50 μg ml−1 kanamycin, and the counter 
electrode was placed in another 2-ml tube (counter chamber) with 1.5 ml of M9 
minimal medium supplemented with 1.56 mM ferricyanide (FCN(O), oxidized) 
and 100 μM PMS, unless otherwise stated. A pair of working and counter chambers 
were connected by a PVC salt bridge.

Electronic control of recordings. Escherichia coli BL21 strain was transformed 
with pRec and pTrig, modified from our previous work22 by replacing the lacI gene 
with the soxR gene on pRec and the lac promoter with the soxS promoter on pTrig 
(Extended Data Fig. 1a). The transformed strain was inoculated into a culture 
tube with 3 ml of LB medium supplemented with 20 μg ml−1 chloramphenicol, 
and 50 μg ml−1 kanamycin and grown overnight in a shaking incubator at 37 °C, 
aerobically. The culture was diluted 1:30 into a new culture tube with 3 ml LB 
medium supplemented with 20 μg ml−1 chloramphenicol, and 50 μg ml−1 kanamycin 
and grown for 2 h aerobically to bring the culture into the exponential growth 
phase. The culture was then moved to an anaerobic chamber and diluted 1:30 into 
a working chamber prepared as above. For induction by electronic signals, +0.5 V 
(on, 1) or 0 V (off, 0) was applied to the chamber for 14 h. The solutions in the 
working and counter chambers were mixed by pipetting every 1–2 h to facilitate 
electrochemical conversion and gene expression induction. Subsequently, 500 μl of 
the culture was collected to assess pTrig copy number by quantitative polymerase 
chain reaction (qPCR). The remaining cell culture was diluted 1:100 into a new 
culture tube with 3 ml of LB medium supplemented with 20 μg ml−1 chloramphenicol, 
and 50 μg ml−1 kanamycin and grown overnight aerobically. A 500 μl volume of the 
cell culture was collected for subsequent analysis of CRISPR arrays for this round  
of encoding. For multi-round encoding, the remaining cell culture was diluted  
again into 3 ml of LB medium supplemented with 20 μg ml−1 chloramphenicol,  
and 50 μg ml−1 kanamycin and other steps were repeated for the next round.

Barcoding of CRISPR arrays. To facilitate CRISPR array barcoding, endogenous 
CRISPR array I in E. coli BL21 genome was removed by homologous recombination 
using pSim6 plasmid51. Both DR barcoding and spacer barcoding were carried 
out by one-step cloning and an integration protocol based on a bacteriophage 
integrase52. For DR barcoding, the 8 bp of the distal end of the first DR of the 
minimal CRISPR array (80-bp leader sequence + DR + the first spacer of the 
original CRISPR array I) was diversified using degenerate oligonucleotides and the 
barcoded arrays were inserted into the pOSIP-CH backbone plasmid. For spacer 
barcoding, we added the 8-bp sequence of Illumina i7 indexes to the downstream 
region of the first spacer of the minimal CRISPR array on the pOSIP-CH backbone 
plasmid. After integration of the plasmids into the genomes of E. coli BL21 strain 
without endogenous CRISPR array I, the backbone part of the plasmids was excised 
by introducing pE-FLP plasmid for FLP recombinase expression, which was then 
removed using a temperature-sensitive replicon. The sequences of the spacer 
barcoded CRISPR arrays are listed in Supplementary Table 1.

Array sequencing and data analysis. CRISPR arrays were sequenced using our 
established sequencing pipeline22 with minor modifications for the barcoded 
CRISPR arrays. Briefly, cells were lysed using a prepGEM bacteria kit (MicroGEM) 
for amplification of input CRISPR array sequences from the DNA. After PCR 
amplification of CRISPR arrays, samples were pooled and, for selected libraries, 
magnetic bead-based size enrichment was performed using AMPureXP beads 
(Beckman Coulter A63881) as previously described. Sequencing was performed 
on the Illumina MiSeq platform (MiSeq v2 300 cycle) with additional spike-in of 
custom sequencing primers. The primer sequences are listed in Supplementary 
Table 3. The raw sequencing data were processed using our established CRISPR 
spacer extraction and mapping pipeline, which is available at https://github.com/
ravisheth/trace with minor modifications. Briefly, raw sequencing reads were 
subjected to spacer extraction (spacer_extraction.py), the extracted spacers were 
mapped to their sources (blast_search.sh), then uniquely mapping spacers were 
determined (unique_spacers.py). Further analysis and data visualization were 
performed mostly in Python with the numpy, scipy, pandas, scikit-learn, matplotlib 
and seaborn packages. We considered only arrays with uniquely mapping spacers at 
all positions within the array, determined if each spacer was either from reference 
(genome or pRec) or trigger (pTrig), and determined the frequency of each array 
type normalized across all possible combinations for the given array length.

qPCR assay for pTrig copy number. The pTrig copy number of a cell culture was 
assessed by qPCR. Briefly, 5 μl of 2× KAPA SYBR Fast qPCR master mix, 0.5 μl 

of 10 μM forward and reverse primers, 3 μl of nuclease free water and 1 μl of cell 
lysate prepared using a prepGEM bacteria kit (MicroGEM) were mixed in each 
well of a 96-well qPCR plate. Two qPCRs were performed to quantify the pTrig 
and genomic DNA present in each sample. The primer sequences are listed in 
Supplementary Table 3.

DNA extraction from soil. DNA extraction from soil was performed using our 
established protocol with a Qiagen MagAttract PowerMicrobiome DNA/RNA Kit 
(Qiagen 27500-4-EP)53. Briefly, 100 mg of soil samples mixed with data-encoded 
cell population at various ratios was added to the plate. A 200 µl volume of 0.1-mm 
Zirconia silica beads (BioSpec 11079101Z) and 750 µl of lysis solution (90 ml 
master mix: 9 ml of 1 M Tris-HCl pH 7.5, 9 ml of 0.5 M EDTA pH 8.0, 11.25 ml of 
10% SDS, 22.5 ml of Qiagen lysis reagent, 38.25 ml of nuclease-free water) were 
added to each well of the plate. The plate was then subjected to bead beating for 
2.5 min followed by 7.5 min of cooling on a bead beater (BioSpec 1001). This bead 
beating cycle was repeated four times. The plate was centrifuged for 5 min at 4,300g 
and 150 µl of supernatant was transferred to a V-bottom microplate. A 35 µl volume 
of Qiagen inhibitor removal solution was added and the plate was centrifuged 
for 5 min at 4,300g, then 100 µl of supernatant was transferred to a round-bottom 
plate (Corning 3795) on a robotic liquid handler (Biomek 4000) for magnetic bead 
purification according to the manufacturer’s recommendations, but at a scaled 
volume. The final elute was further diluted 10-fold with nuclease-free water to 
minimize the effect from any residual PCR inhibitors from soil.

16S rRNA sequencing and data analysis. The V4 region of the 16S rRNA 
gene was sequenced using our established sequencing pipeline53. After PCR 
amplification of the 16S rRNA V4 regions from the soil DNA, the resulting 
~390-bp amplicon was gel-purified and sequenced on the Illumina MiSeq platform 
(MiSeq v2 300 cycle) with additional spike-in of custom sequencing primers. The 
sequencing data were processed using USEARCH v11.0.66754. Reads were merged 
(-fastq_mergepairs), filtered (-fastq_filter -fastq_maxee 1.0 -fastq_minlen 240), 
then error-corrected OTUs (ZOTUs) were generated (-unoise3) and an OTU 
table was created (-otutab). Taxonomy was assigned to ZOTUs using the RDP 
classifier55. A phylogenetic tree was constructed using The Interactive Tree of Life 
(https://itol.embl.de)56.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
All data supporting the findings of this study are available within the Article and 
its Supplementary Information or are available from the authors upon request. 
Sequencing data associated with this study are available at NCBI SRA under 
PRJNA625964.

Code availability
All of the CRISPR spacer extraction and mapping software can be accessed at 
https://github.com/ravisheth/trace or are available from the authors upon request.
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Extended Data Fig. 1 | Development of a redox-sensing DNA-based cellular recorder for direct digital-to-biological data storage. This system is 
composed of two distinct modules: (i) a ‘sensing module’ that converts a desired biological signal into a change in copy number of a trigger plasmid 
(pTrig), and (ii) a ‘writing module’ that overexpresses Cas1-Cas2 from a recording plasmid (pRec) to unidirectionally expand genomic CRISPR arrays with 
novel ~33 bp spacers acquired from genomic or plasmid DNA sources in the cell. In the presence of the desired signal, cells experience a shift in their 
intracellular DNA pool, driven by an increase in pTrig copy number, which results in an acquisition bias for pTrig-derived spacers amongst expanding 
CRISPR arrays. a, The lacI gene in the previous pRec22 was replaced with soxR gene from E. coli, and the lac promoter in the previous pTrig22 was replaced 
with soxS promoter from E. coli. P1 replication system is inactive in the absence of oxidative stress, and a mini-F origin keeps the pTrig plasmid copy number 
low. Upon induction with oxidative stress, SoxR detaches from soxS promoter and activates the P1 replication system to increase the copy number of the 
plasmid. b, pTrig copy number in the presence of various concentrations of phenazine methosulfate (PMS) in aerobic condition. pRec (with an additional 
copy of soxR gene) helps get higher fold-change of pTrig copy number by more efficient repression in absence of the inducer. c, pTrig copy numbers in the 
presence of pRec and various concentrations of PMS, and FCN(R) or FCN(O) in anaerobic condition. Fold change of the pTrig copy numbers at the given 
concentrations of FCN(R) or FCN(O) were plotted. d, Various aTc concentrations and (e) induction time for the expression of cas1 and cas2 genes were 
tested for CRISPR array expansion. f, Various FCN(R) and FCN(O) concentrations were tested for pTrig copy number induction and (g) pTrig-derived 
spacer incorporation. The proportions of pTrig-derived spacers among all newly incorporated spacers are displayed. All measurements are based on three 
biological replicates. Error bars represent s.d. of three biological replicates.
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Extended Data Fig. 2 | Construction of a multi-channel electrochemical redox controller. a, In an anaerobic chamber, a Raspberry Pi controls 3 of 
8-channel relay modules (total 24 relays), which turn on or off electrical signals into each chamber pair from a power supply, based on a python script 
running on a wirelessly connected PC. b, A pair of working and counter chambers is connected by an agar salt bridge. In a working chamber, cells are 
incubated in M9 minimal medium supplemented with antibiotics, aTc, FCN(R) and PMS. M9 minimal medium supplemented with FCN(O) and PMS 
is filled in another chamber (counter). c, A photograph of the multi-channel electrochemical redox controller in an anaerobic chamber. d, Changes in 
electrochemical redox states of FCN(R) in a working chamber (left) and FCN(O) in a counter chamber (right) measured by absorbance at 420 nm 
with (0.5 V) and without (0.0 V) electronic signals. All measurements are based on three replicates. Error bars represent s.d. of three replicates.
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Extended Data Fig. 3 | encoding of 3-bit binary data profiles. a, Schematic diagram of experimental steps for multi-round encoding. After each round of 
electrical stimulation, the cell population was recovered in the rich medium (LB) aerobically so that the induced/uninduced plasmid copy number in the 
previous encoding round can be diluted out and reset low. b, To determine the recovery condition, anaerobic and aerobic conditions were compared.  
c, Overlaid distributions of the plasmid copy numbers with/without signals at each round over the course of the multi-round encoding (Fig. 2b). d, CRISPR 
array expansion over the course of the experiment. e, The 3-bit binary data profiles are grouped by the number of electronic signals, and the proportions 
of pTrig-derived spacers among all newly incorporated spacers are displayed. f, To enrich the sequencing reads for expanded arrays with more new 
spacers (longer arrays), the magnetic bead-based size enrichment was performed. Frequency of arrays of different lengths (unexpanded and L1-L4) 
with and without size enrichment are plotted. g, Principal component analysis on the array-type frequency profiles for the 3-bit digital data profiles. All 9 
independent biological replicates are shown for each 3-bit digital data profiles. The first three independent datasets used for training of the Random Forest 
classifier are highlighted. All measurements are based on two or more biological replicates. Error bars represent s.d. of three or more biological replicates.
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Extended Data Fig. 4 | Performance of a Random Forest classifier for data reconstruction. a, Confusion matrix from cross validation of the Random 
Forest classifier for 10 times by training on randomly selected 2 datasets for each 3-bit digital data profile from the 3 independent experiments and testing 
the trained model on the left-out 1 dataset. b, Importance of features (array-types) for the Random Forest classifier in Fig. 2f. c, Classification performance 
for the number of CRISPR arrays. CRISPR arrays with new uniquely mapping spacers were randomly subsampled to the various numbers for the 3-bit 
digital data profiles and classifications were performed. Recall accuracies for distinguishing 8 different types of 3-bit digital data profiles were displayed 
as a function of the number of expanded arrays with uniquely mapping spacers (grey: all arrays, red: L2/L3 arrays). The number of sequencing reads 
corresponding to the number of expanded arrays with uniquely mapping spacers (grey: all arrays) is also provided as an additional x-axis. Shaded regions 
represent 95% confidence interval of 10 iterations of subsampling and classification. d, Recall accuracies for distinguishing 8 different types of 3-bit digital 
data profiles with varying proportions of randomly selected training datasets for each 3-bit digital data profile. Shaded regions represent 95% confidence 
interval of 100 iterations of subsampling and classification.
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Extended Data Fig. 5 | Barcoding CRiSPR arrays for multiplexed encoding. a, CRISPR arrays can be barcoded with 8-bp unique sequences either 
downstream of the 1st spacer region or within direct repeat (DR) region. b, CRISPR array expansion rates (relative to wild-type array) of 69 DR-barcoded 
CRISPR arrays and 24 spacer-barcoded CRISPR arrays. c, Distribution of array expansion rates of spacer-barcoded CRISPR arrays is much more uniform 
and consistent than that of DR-barcoded CRISPR arrays. A DR variant (d1) that was more efficient than the wild-type DR sequence in the initial 96-well 
plate-based test is highlighted. d, The d1 DR variant was tested again in tube culture condition. In tube culture condition, however, the DR variant did not 
show significantly higher activity than that of the wild-type DR sequence. e, Comparison of CRISPR array expansion rates measured individually or in pool. 
Shaded region represents 95% confidence interval for linear regression (dashed grey line). Sample sizes (n) and Person correlation coefficient (r) are 
shown. All measurements are based on three biological replicates. Error bars represent s.d. of three biological replicates.
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Extended Data Fig. 6 | Projections on the scale of DRiVeS. a, Data storage capacity (‘n’ bits of information or ‘n’ rounds of encoding) per cell population 
is estimated as a function of Cas1-Cas2 activity (‘X’ proportion of the cell population expanded arrays with a new spacer after a single round of encoding). 
Here, ‘Xn’ proportion of the cell population would have expanded arrays every round resulting ‘n’ new spacers (Ln arrays) after ‘n’ rounds of encoding, 
and we assumed that the sampling capacity for the Ln array population governs the data storage capacity. We considered various sampling depths ‘D’, 
where ‘D’ proportion of the cell population can be sufficiently sampled. This ‘D’ could be affected by many factors including the sequencing depth and 
size enrichment efficiency. We assumed that if the ‘Xn’ is same or higher than the given sampling depth constraint ‘D’, ‘n’ bits can be stored and reliably 
decoded. For example, when 0.001 of the cell population can be sufficiently sampled (D=0.001), maximum data storage capacity would be 3 bits (n=3) 
with the current Cas1-Cas2 activity level (X=0.1) as in our current experimental dataset (highlighted in red in the plot). And when 0.0001 of the cell 
population can be sufficiently sampled (D=0.0001), maximum data storage capacity would be 4 bits (n=4) with the current Cas1-Cas2 activity level 
(X=0.1). Although the Illumina MiSeq v2 300 cycles kit used in this study can read only up to 5 new spacers, we assumed that sequencing read length is 
not the limiting factor in this projection as other long read sequencing technologies could be employed. b, Estimated total data storage capacity across 
barcoded cell populations as a function of Cas1-Cas2 activity and the number of parallel channels in the culture platform at two different sampling depths 
(D=0.001 and D=0.00001). A larger data per cell population would require more rounds of encoding which takes longer time, and a larger number of 
parallel channels would require more barcoded cell populations and more sophisticated design of the culture platform. Current capacity of the system with 
24 channels in the culture platform is highlighted in blue in the plot.
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Extended Data Fig. 7 | Design of 6-bit encoding tables for text messages. a, Probability of correct classification for each of the 3-bit digital data profiles 
by the Random Forest classifier on the newly generated independent datasets is calculated based on the result in Fig. 2f. b, DEC and OPT encoding tables 
with estimated probabilities of correct classification for the 64 characters. OPT 6-bit encoding table was designed by considering the correct classification 
probability and the usage frequency of the characters (https://mdickens.me/typing/letter_frequency.html). c, Probability of correct decoding for the 
64 characters (ordered by usage) with DEC and OPT 6-bit encoding tables. d, Comparison of predicted probabilities of correct decoding for various 
text messages based on the two encoding tables. The predicted probabilities of correct decoding for each character or text message were calculated by 
multiplying the correct decoding probability values of each 3-bit digital data profile units.
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Extended Data Fig. 8 | Reading ‘hello world!’ from subsampled sequencing reads. Sequencing reads from each barcode in the ‘hello world!’-encoded cell 
population using OPT table were randomly subsampled to the various numbers and classifications were performed. Recall accuracies for (a) distinguishing 
3-bit digital data profiles for 24 barcoded populations or for (b) calling correct bits out of 72 bits were displayed as a function of the number of expanded 
arrays with uniquely mapping spacers (grey: all arrays, red: L2/L3 arrays). The number of sequencing reads corresponding to the number of expanded 
arrays with uniquely mapping spacers (grey: all arrays) is also provided as an additional x-axis. Shaded regions represent 95% confidence interval of 10 
iterations of subsampling and classification.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | improving data reconstruction with error correction. a, By using every sixth bit as a check point (checksum) for the first 5 
bits, errors in data reconstruction can be detected and corrected for the selected 32 combinations of 6-bit digital data profiles based on the classifier’s 
confusion probability in Fig. 2f and Extended Data Fig. 9b. For example, for a digital input ‘011110’ could be classified as ‘011110’, ‘011010’, ‘001110’, or 
‘001010’ with the probabilities of 69%, 14%, 14%, or 3%, respectively. Out of these 4 possible initial classifications, the last 3 are wrong and the 2 wrong 
classifications with a single bit error can be detected by the check point values and fixed. However, the classification result with 2 bits error cannot be 
detected by the check point value and therefore cannot be fixed. For all 32 combinations of 6-bit digital data profiles, possible classification results, their 
probabilities, and whether they can be fixed or not are summarized in Supplementary Table 2. b, Confusion probability for each of the 3-bit digital data 
profiles based on Fig. 2f. c, The check point values for each combination of eight 3-bit and four 2-bit digital data profiles. d, OPT2 encoding table with 
the estimated probabilities of correct classification for the 32 characters. e, Probability of correct decoding for the 32 characters (ordered by usage) for 
OPT and OPT2 6-bit encoding tables. f, ‘synbio@cu’ encoded in the genomes of barcoded E. coli populations using the OPT2 error correction strategy. 
Two errors from the initial classification were detected using the check points and successfully corrected as described in the figure. For classification of 
each barcoded cell population, an average of 492,289 total sequencing reads with 268,066 reads of expanded arrays (or 106,242 of L2/L3 arrays) that 
uniquely map spacers were used. Bead-based size enrichment was performed to enrich for expanded arrays and deplete unexpanded arrays. Frequencies 
of array-types are in log10 scale. All measurements are based on a single experimental study.
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Extended Data Fig. 10 | Data stability in replicating cells. A mixed pool of 24 barcoded cell population encoded with a 72-bit text message ‘hello world!’ in 
Fig. 3 was subsequently diluted 1:100 every 24 hours into 3 mL fresh LB media with antibiotic for a total of 16 days (~106 generation, ~6.6 generations per 
day). a, Data stability in the propagating cell population over 100 generations. Accuracy indicates the proportion of bits that are correctly classified. >90% 
of the 72 bits could be correctly retrieved up to ~80 generations. Shaded region represents s.d. of three biological replicates. For classification of each 
barcoded cell population, an average of 82,860 of total sequencing reads with 40,502 reads of expanded arrays (or 17,139 of L2/L3 arrays) that uniquely 
map spacers were used. Bead-based size enrichment was performed to enrich for expanded arrays and deplete unexpanded arrays. b, Gradual changes 
in the relative abundance of 24 barcoded cell population over time suggests adaptive mutations with fitness effects arising in some of the subpopulation. 
Samples were collected at the time points indicated by arrows (day 0, 4, 6, 8, 12, and 16). All measurements are based on three biological replicates.
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