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Abstract

Interbacterial antagonism can significantly impact microbiome
assembly and stability and can potentially be exploited to
modulate microbes and microbial communities in diverse en-
vironments, ranging from natural habitats to industrial bio-
reactors. Here we highlight key mechanisms of interspecies
antagonism that rely on direct cell-to-cell contact or diffusion of
secreted biomolecules, and discuss recent advances to pro-
vide altered function and specificities for microbiome engi-
neering. We further outline the use of ecological design
principles based on antagonistic interactions for bottom-up
assembly of synthetic microbial communities. Manipulating
microbial communities through these negative interactions will
be critical for understanding complex microbiome processes
and properties and developing new applications of microbiome
engineering.
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Introduction
Microbial communities are made up of diverse sets of
microbes that participate in complex interspecies in-
teractions and metabolic processes. Such interactions may
include mutualistic cross-feeding, competitive exclusion,
or antagonistic killing, which often determine the popu-
lation dynamics, stability, and resilience of the community
[1]. Recent studies to understand these key ecological
principles have improved our understanding of microbial
community assembly, dynamics, and functions [2,3]. On
www.sciencedirect.com
the other hand, much remains to be explored as new
processes, mechanisms and biological machineries are
being discovered [4]. On a practical level, targeted mod-

ulation of microbial community interaction has the po-
tential to impact numerous emerging microbiome
applications spanning medicine, agriculture, and bio-
production [5e7].

Bacterial antagonism is one of the most common phe-
nomena observed in microbial communities. Antagonistic
interactions enable bacteria to establish their spatial and
nutrient niches by directly inhibiting growth of or killing
their neighbors. The study of microbial antagonism has
led to key breakthroughs in medicinedfor instance, the

development of antibiotics [8]. With the ever-growing
abundance of (meta)genomic data, a diverse set of
mechanisms for bacterial antagonism has been discovered
[4]. Most major bacterial phyla possess the capacity to
carry out such bacterial warfare, with some strains
harboring multiple antagonistic systems that produce
synergistic efficacy and lethality [9]. While one might
posit that the evolutionary arms race for bacteria, weap-
onized with antagonistic machineries, would significantly
destabilize microbial ecosystems, recent studies have
shown that such competitive interactions actually

strongly promote diversity and stability by promoting
spatial structuring [2,10]. In fact, cooperative in-
teractions, while efficient, are often destabilized upon
external perturbations, in contrast to antagonistic in-
teractions that lead to more robust populations [2]. As
many antagonistic systems have only been recently
described, their roles as mediators of microbial ecology
and dynamics are underestimated thus far.

Here, we outline key mechanisms for interbacterial
antagonism and highlight recent studies that have uti-

lized these systems to manipulate microbial commu-
nities. Specifically, we discuss several promising contact-
dependent (cis) and diffusion-based (trans) antago-
nistic systems. Since there is extensive literature de-
tailing various aspects of bacterial antagonism that
cannot be comprehensively covered here, we refer the
readers to several excellent reviews on the subject for
further reading [1,3,4,11e13]. Instead, we focus here on
aspects related to the use of such systems for directed
microbiome modulation. We will examine recent ex-
amples of engineering efforts to apply and enhance
these systems to optimize their performance and spec-

ificity in complex microbial consortia. Finally, we will
consider how these antagonistic systems can be
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2 Futures of BME: Bioengineering of the Microbiome
leveraged to assemble synthetic microbial communities
and control them to exhibit sophisticated and robust
phenotypes for several biotechnological applications.
Contact-dependent microbial antagonism
Contact-dependent antagonism is based on the direct
transfer of toxic protein effectors or proteineDNA
complexes from a donor cell to a target cell. Target
cells that lack immunity proteins to protect against the
toxins are killed. These local antagonistic interactions
are generally mediated by multicomponent protein
secretion machineries, including Type IV, V, and VI
secretion systems (T4SS, T5SS, and T6SS), whereas
Figure 1

Representative contact-dependent interbacterial antagonistic systems a
key features. (b) Modular effector delivery mechanisms of T6SS. (c) Target spe
target bacteria. (d) T4SS-based conjugative gene transfer has been applied t
CRISPR-based systems can be delivered as genetic payloads for sequence-
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some involve direct exchange of outer membranes be-
tween cells (Figure 1a) [11,13]. Since contact-
dependent antagonism only impacts nearest local
neighbors, it predominantly serves to partition spatial
niches and interspecies boundaries. We outline several
examples of how engineering these cis-antagonistic in-
teractions are paving the way for in situ modulation of
microbial communities.

The T5SS is one of the first identified mechanisms of
interbacterial antagonism where bacterial growth is
regulated by direct cell-to-cell contact, termed contact-
dependent growth inhibition (CDI) [14]. T5SSs are
nd their applications. (a) Schematic diagram of the systems and their
cificity of T6SS can be modified by introducing binding protein specific to
o engineering of diverse microbes in their native environments. (e)
specific manipulation of microbial communities.
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Engineering antagonistic bacterial interactions Yim and Wang 3
found in the outer membrane of Gram-negative bacteria
and have relatively simple architectures, with some
subtypes consisting of only one protein component [15].
T5SS proteins are composed of two distinct functional
regions, typically a C-terminal b-barrel domain anchored
in the outer membrane and an exposed N-terminal
passenger domain that can be cleaved and released
extracellularly. The functions of the passenger domain

can be highly diverse, including adhesion to target cells
or extracellular matrix components, autoaggregation for
biofilm formation, and cell-to-cell CDI [15]. CDI by the
Type Vb secretion system is based on two-partner
secretion, with subunits CdiB and CdiA. CdiB is a
translocator that exports the CdiA toxin effector to the
cell surface. CdiA proteins range in size from 180 to
630 kDa, but all share the same general architecture
[13]. Recent elucidation of the CdiA secretion and toxin
delivery mechanism shows that CdiA is exported first
into the periplasm through the Sec-dependent secretory

pathway, then across the outer membrane through CdiB
using an N-terminal two-partner secretion transport
domain [16]. Upon recognition of its target by its pro-
truding receptor binding domain (RBD), CdiA auto-
proteolytically cleaves its effector domain (CdiA-CT),
which is delivered into the target cell. T5SS results in
strong inhibition activity against target cells even when
cellecell interactions are transient under planktonic
conditions, unlike other contact-dependent antagonistic
systems that often require prolonged cellecell adhesion.

Rational engineering of CDI target specificity could be
achieved by altering the RBDs. Ruhe et al. [17] iden-
tified a RBD in BamA-specific CdiA from Escherichia coli
by generating tagged CdiA fragments and performing a
binding assay against purified BamA. Interestingly,
BamA-specific and OmpA-specific CdiA proteins shared
only ~24% sequence identity for their putative receptor
binding regions and swapping the regions altered their
specificity accordingly. Beyond modular target speci-
ficity, CDI could be loaded with diverse passenger
proteins, given that T5SS autotransporter domains have
been widely used as potent cell surface display plat-

forms for heterologous proteins in a variety of biotech-
nological applications [18]. Willett et al. [19]
demonstrated this potential by showing that CdiA C-
terminal toxin domains from different bacterial species
are interchangeable and can be redirected through
different translocation pathways when fused to N-ter-
minal domains of heterologous CdiA proteins.

The T6SS is a prevalent cis-antagonistic system found in
Gram-negative bacteria, especially in Proteobacteria and
Bacteroidetes, that injects target-specific toxin effectors

into neighboring cells [11]. Some bacteria, such as Pseu-
domonas aeruginosa, contain multiple evolutionarily distinct
T6SSs [9]. T6SSs can be potent against closely related
bacteria, as well as those in other genera and kingdoms,
including their eukaryotic hosts or fungi that are also a
www.sciencedirect.com
part of the ecosystem [20,21]. Recent studies have
revealed the role of T6SSs in not only shaping microbial
community composition but also augmenting host’s
resilience to pathogen colonization in the mammalian gut
[22,23]. The canonical T6SS from E. coli consists of 13
genes (tssA through tssM) encoding its core structural
components, and one gene encoding the PAAR (prolinee
alanineealanineearginine repeat) domain-containing

protein on its tip [11]. When the T6SS complex sheath-
like structure enters a contracted state, the Hcp(TssD)-
VgrG(TssI)ePAAR puncturing complex is able to pene-
trate and translocate into the target cell to deliver the
toxin effector (Figure 1b) [20,24]. T6SS toxin effectors
have a wide range of antibacterial effects and can be
grouped by their targets: cell wall (peptidoglycan ami-
dases, peptidoglycan hydrolases), cell membrane (phos-
pholipases, pore-forming effectors), and cytoplasm
(nucleases, NADP þ hydrolases, FtsZ inhibitors). There
are immunity proteins that can detoxify specific toxin

effectors (i.e. effector/immunity pairs) and are generally
encoded downstream of the effector loci [11] or some-
times in separate mobile arrays of immunity genes [25].

The diversity and modular nature of T6SS systems and
its effector/immunity proteins suggests the possibility
for engineering. Loading other protein domains (e.g.
from b-lactamase) either directly to the puncturing
complex or to other effectors that are associated with
the complex has been demonstrated for T6SS-based
protein delivery into eukaryotic host cells [26,27].

Wettstadt et al. also recently showed in P. aeruginosa that
fusing the C-terminus of a canonical VgrG with other
proteins enabled extracellular secretion of the fused
protein by T6SS although direct injection into a target
bacteria was not demonstrated [28]. Although further
work will be needed to assess carrying capacity and
extend it towards diverse protein substrates, these ex-
amples clearly demonstrate the potential of T6SS as a
generalizable platform for interbacterial protein de-
livery. To improve specificity of cell targeting in a mixed
population, Ting et al. [29] sought to develop
‘programmed inhibitor cells’ (PICs) expressing syn-

thetic protein binders that can interact with bacterial
surface antigens on target cells to enhance selective
killing (Figure 1c). In this study, camelid-derived single
domain antibodies (nanobodies) were displayed on the
cell surface of T6SS-active Enterobacter cloacae to direct
the antibacterial activity of the T6SS against E. coli cells
either in synthetic or natural microbial communities,
resulting in specific killing of the target cells at >90%
efficiency. While such nanobody cell-surface binders
have many desirable characteristics, such as small size,
high stability, and strong antigen binding affinity, gen-

eration of potent nanobodies against specific novel
bacterial strains remains challenging. We expect that
‘reverse genomics’ [30] and continuous directed evo-
lution [31] approaches will be useful to identify surface-
exposed target antigens and expedite the discovery and
Current Opinion in Biomedical Engineering 2021, 19:100307
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affinity maturation of nanobodies against these antigens.
Furthermore, metagenomic mining and characterization
of natural binding proteins against diverse microbes,
such as phage/prophage RBD [32,33], could expand the
binding repertoire for programmable T6SS antagonism.

The T4SS is arguably the most versatile family of pro-
tein secretion systems with functionally diverse sub-

types depending on both the class of molecules they
export and their biological roles, including contact-
dependent interbacterial antagonism [11]. T4SSs are
found in both Gram-negative and Gram-positive bacte-
ria, as well as in archaea, and can mediate translocation
of cargo molecules including monomeric as well as
multi-subunit protein toxins and nucleoprotein com-
plexes. The canonical T4SS systems are all encoded by
12 conserved genes, virB1 through virB11 and virD4. For
conjugative DNA transfer to occur, DNA transfer and
replication (Dtr) proteins bind to a cognate origin-of-

transfer (oriT) sequence to form a DNAeprotein com-
plex, termed the relaxosome, and process the DNA into
a single-stranded DNA substrate (T-strand) [34]. The
T-strand further interacts with Type IV coupling protein
VirD4 to be transferred through the T4SS channel.
Protein effector substrates interact with VirD4 via a C-
terminal signal sequence that is hydrophilic and has a
net positive charge with a consensus motif of R-X(7)-R-
X-R-X-R-X-X(n) [11].

The T4SS’s broad target range and unique capability for

DNA transfer have enabled its use for genetic manipula-
tion of diverse microbes and microbial communities
(Figure 1d). In a recent example, Brophy et al. demon-
strated T4SS-based DNA transfer from an engineered
donor B. subtilis strain, called XPORT, into diverse Gram-
positive bacteria isolated from human gut, skin, and soil
samples using integrative and conjugative elements
(ICEs) [35]. Among 55 bacterial strains tested, 35 gram-
positive bacterial strains spanning 26 species and 9
genera yielded mini-ICE transconjugants using XPORT. A
10-kb nitrogen fixation gene cluster could be delivered by
the mini-ICE system into four Bacillus species. Similarly,

our lab developed a technique called ‘metagenomic
alteration of gut microbiome by in situ conjugation’
(MAGIC), where mobile plasmids are delivered from a
donor E. coli probiotic strain to resident microbes in the
mammalian gut in situ through broad host range RK2/
RP4-based T4SS conjugation system [36]. MAGIC could
deliver genetic payloads (e.g. a green fluorescent protein
or an antibiotic-resistance gene) into more than 5% of the
diverse murine gut microbiota spanning multiple major
bacterial phyla. Beyond these general T4SS gene transfer
applications, CRISPR-Cas systems can also serve as pro-

grammable effectors when delivered by T4SS to mediate
directed antagonism (Figure 1e). CRISPR-Cas9, Cas13a,
as well as recently characterized CRISPR-transposon
systems, could be delivered as vectors encoding Cas
genes and associated guide RNAs against specific genomic
Current Opinion in Biomedical Engineering 2021, 19:100307
loci to mediate sequence-specific killing or enrichment of
target cells [37e40].

Bacterial cells can also interact with each other by
direct outer membrane exchange (OME). OME was
first identified and most extensively studied in Myxo-
coccus xanthus [41]. Neighboring cells in the myxo-
bacterial population transiently fuse their outer

membrane using TraA-TraB cell surface proteins. The
outer membrane fusion allows diffusion of outer
membrane lipids and proteins between cells, homog-
enizing the cell populations with heterogeneous outer
membranes until they get separated again [42].
Interestingly, it was shown that this bacterial social
behavior improves the overall fitness of mixed popu-
lations of healthy and damaged cells by complemen-
tation of cellular damage or mutational defects in the
damaged subpopulation. Furthermore, this multicel-
lular cooperation is precisely limited to their kin

through polymorphic toxin, SitA, which is transferred
during OME and requires a cognate immunity gene,
SitI, for neutralization [13]. OME-based interbacterial
interaction mechanisms are seemingly widespread
given that other bacteria have also been found to ex-
change their membrane and associated contents be-
tween cells either directly [43] or even remotely
through outer membrane vesicles or membrane-
derived nanotubular structures [44]. The unique ca-
pabilities associated with direct modification of outer
membranes of target cells and translocation of diverse

substrates, including protein, DNA, and metabolites,
suggest potential utility of OME mechanisms for
modulating microbial communities in manners distinct
from protein secretion systems.
Diffusion-based microbial antagonism
Fierce interbacterial competition has led to the evolu-
tion of long-range warfare systems in bacteria, such as
soluble small molecules, peptides, proteins, and even
viral particles that can diffuse into surrounding envi-
ronments and mediate interactions between distant
bacterial cells [12]. Diffusion-based antagonistic sys-
tems have long been used as antimicrobials in medical
therapeutics and the food industry. Beyond traditional
antibiotics, peptide- or protein-based diffusible antag-
onistic systems are poised to become next-generation
antimicrobials for microbiome modulation owing to

their relatively simple production process, adjustable
target spectrum, widespread natural biodiversity, and
vast combinatorial sequence space (Figure 2a) [45].

Bacteriocins represent a broad and large family of
ribosome-synthesized bacterial toxins with bactericidal
or bacteriostatic effects, found in all major phyla
including archaea [12]. Bacteriocins can antagonize
target cells at the cell envelope (e.g. pore formation and
inhibition of cell wall synthesis) or in the cytoplasm (e.g.
www.sciencedirect.com
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Figure 2

Representative diffusion-based interbacterial antagonistic sys-
tems and their applications. (a) Schematic diagram of the systems
and their key features. (b) SLAY (surface localized antimicrobial display)
method could be applied to high-throughput characterization of natural
and synthetic bacteriocins against diverse bacteria. (c) Coexistence of
slow-growing Curvibacter sp. and fast-growing Duganella sp. are
mediated by an inducible prophage in Curvibacter sp. that can lytically
infect Duganella sp.; (d) Phage host-range can be modulated by
diversification of tail fiber proteins.
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inhibition of DNA gyrase and RNA polymerase) [45]
and are generally classified into small peptides and
larger protein groups. Peptide bacteriocins either un-

dergo extensive post-translational modifications (class I
or lantibiotics from Gram-positive bacteria and class I
microcins from Gram-negative bacteria) or are unmod-
ified (class II from Gram-positive bacteria and class II
www.sciencedirect.com
microcins from Gram-negative bacteria) [12]. Nisin,
produced by Lactococcus lactis, is a representative
pore-forming class I peptide bacteriocin that effectively
inhibits wide range of bacteria. Nisin-like class I
bacteriocins range from 21 to 38 amino acids in size and
are generated from gene clusters that encode the
prepeptide (nisA), modification of amino acids (nisB,
nisC), cleavage of leader peptide (nisP), secretion (nisT),
immunity (nisI, nisFEG), and gene regulation (nisR, nisK)
[46]. Unmodified class II bacteriocins, ranging from 30
to 60 amino acids, have relatively simple biosynthesis
due to limited post-translational modifications and
constitute the largest group of bacteriocins. Class II
bacteriocins act on a variety of essential cellular
machineries, such as sugar transporters and ribosomal
subunits [45]. Colicin, produced by E. coli, is a repre-
sentative group of protein bacteriocins [13]. Colicins are
typically encoded on plasmids as a gene cluster that
produces the colicin toxin, a cognate immunity protein,

and a lysis protein for release of the toxin. Colicins are
divided into many different subtypes but generally
composed of three functional domains, an N-terminal
domain for translocation through the membrane of the
target bacteria, a central RBD for recognition of specific
surface receptors on target bacteria, and a C-terminal
domain responsible for the toxic activities such as pore
formation or nucleic acid degradation [13].

Currently, the throughput to characterize and engi-
neer natural and synthetic bacteriocins is limited

because individual bacteriocins need to be assayed in
individual wells. Droplet-based miniaturization and
parallelization of assay reactions offers a greatly
improved and less expensive approach to characterize
a large number of bacteriocins simultaneously [47].
Alternatively, the cells themselves could act as such
microassay reactors. Tucker et al. devised a technique
called ‘surface localized antimicrobial display’ (SLAY)
where individual antimicrobial peptides are anchored
on the surface of bacterial cells, only affecting the
viability of the expressing cells [48]. SLAY allowed up
to 800,000 peptides to be assayed in a single tube using

multiplexed sequencing readouts. The method iden-
tified thousands of fully synthetic peptide sequences
with antimicrobial activities. Interestingly, in contrast
to natural antimicrobial peptides that are dominated
by cationic and amphipathic residues, the synthetic
peptides covered a wider sequence space with
potentially different inhibitory mechanisms. While 20-
mer random peptides against E. coli were tested in the
study, we expect that SLAY and similar approaches
could be applied to natural bacteriocins and their
variants with cell envelope-associated mechanisms

against diverse bacterial species (Figure 2b). Further-
more, host genetic determinants of bacteriocin sensi-
tivity could also be systematically investigated using
barcoded transposon-insertion mutant libraries [49].
To improve bacteriocin production, which is often very
Current Opinion in Biomedical Engineering 2021, 19:100307
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challenging due to their cellular toxicity, Liu et al.
demonstrated a rapid cell-free framework for recon-
structing and screening multi-gene biosynthetic
pathways for nisin and its analogs [50]. Such cell-free
approaches that decouple cell viability from produc-
tion provide an alternative and powerful route to
synthesize and screen toxins at scale that are otherwise
difficult to generate.

Long-range interbacterial interactions can also be
mediated by prophages integrated in bacterial ge-
nomes that are conditionally activated. The wide
prevalence of temperate bacteriophages and pro-
phages in nature suggests that lysogenic phages might
increase host competitiveness in the ecosystem,
despite a fitness burden of prophage carriage [51]. For
example, in the two-species microbial community of
slow-growing Curvibacter sp. and fast-growing Duganella
sp. that colonize Hydra vulgaris, an inducible prophage

in the Curvibacter sp. that can lytically infect Duganella
sp. plays a key role in coexistence of the two bacterial
species by switching its life cycle between lysogenic
and lytic pathways (Figure 2c) [52]. In addition, recent
studies have shown that dietary compounds, such as
sugars, and microbiota-derived short-chain fatty acids
can often induce prophages from various bacterial
species in a species-selective manner [53,54]. Given
that phage genomes can now be extensively engi-
neered with synthetic lytic-lysogenic regulatory cir-
cuits [55], modified host ranges (Figure 2d) [56,57], or

diverse genetic payloads for any desired functions
[38,58], new prophage activation mechanisms could be
used as a system for phage-mediated microbial in-
teractions by leveraging lysogenic bacteria as a stable
and programmable vehicle for natural or engineered
phages to modulate microbial communities.
Antagonistic modulation of synthetic
microbial communities
Bottom-up approaches have gained recent attention for
assembling synthetic communities with defined mi-
crobes and their interactions [59]. Beyond their utility
as a minimal model system to study the organization and
dynamics of complex natural microbiomes, synthetic
communities with unique qualities, such as specific di-
visions of labor or spatial organization, can be useful in a
variety of biotechnological applications. Furthermore,

synthetic complex communities could be used to
replace dysbiotic microbiota in certain applications,
such as during pathogen infections in the gut, for safer
and more predictable therapeutic outcomes [60]. In
practice, however, the utility of such synthetic microbial
communities depends heavily upon the robustness,
scalability, and programmability of the underlying
interbacterial interactions among the members, which
require extensive characterization and engineering.
Current Opinion in Biomedical Engineering 2021, 19:100307
Interbacterial antagonistic mechanisms have recently
been adopted to address challenges in assembling and
modulating robust synthetic microbial communities. In a
recent example, Kong et al. demonstrated that synthetic
communities of L. lactis could be programmed with all
possible modes of pairwise microbial interactions (i.e.,
commensalism, amensalism, neutralism, cooperation,
competition, and predation) by reconfiguring biosynthetic

pathways for bacteriocins [61]. Both signaling and anti-
microbial features of nisin were extensively utilized to
design and construct these pathways. To create a coop-
erative two-strain community, the multigene nisin
biosynthetic pathway was divided into two steps: (i)
synthesis and secretion of precursor, and (ii) post-
translational modification. Each strain in the community
was assigned with a single synthetic step so that they
could produce active nisin and survive in tetracycline-
supplemented media by nisin-inducible tetracycline
resistance only when they cooperate. Quantitative models

derived from the two-strain synthetic communities were
used to design and build more complex ecosystems with
three and four members. In another work, Liao et al. [62]
showed that cyclical ‘rockepaperescissor’ ecology among
three bacterial strains can extend the lifetime of genetic
integrity and community-wide function of the system.
Each strain of the community was designed to produce
both a toxin (colicins) that can kill one of the other strains
and the corresponding immunity proteins to protect
themselves. Serial introduction of a strain that can
displace a previously existing strain population prolonged

the desired function of the microbial community by
removing potential mutants with nonfunctional genetic
circuits and effectively resetting the gene pool. While
these examples clearly demonstrate the utility of inter-
bacterial antagonism in building robust and functional
synthetic microbial communities, further work will be
needed to assemble communities at much larger scales for
different applications. We expect high-throughput
methods that can rapidly resolve microbial interaction
mechanisms will accelerate the discovery and character-
ization of novel antagonistic mechanisms [63,64].
Outlook and conclusions
Engineered bacteria with programmable antagonistic
capabilities to target and manipulate any specific bac-
teria at the strain level in complex microbial commu-
nities will be an enabling platform for microbiome

engineering. Engineered interbacterial antagonistic
systems could be used for: (i) killing or growth inhibi-
tion, (ii) engraftment or growth activation, (iii)
replacement, (iv) spatial structuring, and (v) genetic
engineering of bacteria in their native environments. We
expect that building upon the previous approaches using
protein binders, modular domain swapping or muta-
genesis, and programmable sequence-specific nucleases
will be key to modulating target specificity of both
www.sciencedirect.com
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contact-dependent and diffusion-based antagonistic
mechanisms [17,29,33,37e39,57]. Selecting a suitable
antagonistic system for specific applications will be
needed as spatial scale of interference is a critical
parameter that determines organization of microbial
ecosystems [65]. For example, interaction scales of
contact-dependent antagonistic systems are highly
limited compared to those of diffusion-based antago-

nistic systems due to their requirement for direct cell-
to-cell contact. However, the cis-antagonistic systems
generally exhibit stronger interference within their
confined spatial niches as they are less prone to dilution
effects that often reduce the efficacy of trans-
antagonistic systems. It is also important to consider
interbacterial interactions when engineering micro-
biomes. Recently, Hsu et al. showed phages with narrow
target spectrum can significantly impact even species
that are not directly targeted [66]. Better understanding
of the functional mechanisms and ecological roles of

antagonistic systems in shaping microbial communities
will be needed for further development of programma-
ble cellular and molecular microbiome engineering tools
while considering such collateral damages that can be
induced from manipulating target bacteria in complex
microbial communities. Recent advances in high-
throughput DNA synthesis and sequencing technolo-
gies as well as massively parallel assays will facilitate the
systematic exploration of the vast biodiversity of the
antagonistic systems and will provide a foundation for a
variety of new powerful tools to modulate diverse nat-

ural and synthetic microbial communities.
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