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Abstract: Microbial cell factories have emerged as pivotal
platforms for the sustainable production of biofuels, pharma-
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ceuticals, and high-value chemicals. Despite remarkable
progress, the rational design and optimization of microbial
hosts remain a major challenge due to complex cellular physi-
ology, unknown gene functions, and the limitations of tradi-
tional trial-and-error approaches. Integration of systems and
synthetic biology approaches can effectively address these
barriers. Systems biology enables global understanding and
predictive cellular modeling through omics analyses, while
synthetic biology provides standardized tools for construc-
tion and dynamic regulation of microbial cells. The integra-
tion of both fields under the Design-Build-Test-Learn (DBTL)
framework has transformed microbial strain development into
a data-driven, iterative engineering process. This review com-
prehensively examines key systems biology tools such as
genomics, transcriptomics, proteomics, and metabolomics, as
well as synthetic biology approaches including bioparts assem-
bly, genetic circuits, and high-throughput screening. Further-
more, the emerging roles of biofoundries and Al-powered
automation platforms are introduced to accelerate DBTL
cycles. By unifying systems-level insights with engineering
precision, these integrated approaches pave the way for the
next generation of high-performance microbial cell factories.

Keywords: systems biology, synthetic biology, metabolic engi-
neering

1. INTRODUCTION
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Arshs vhol 2. 35S ofu| gt [13]. o] 714 A Al
A R A 22 12 35 342 o)
U HgE 4 gl ulE A Ay 74 2R g0

oA 4 T T U 43 ol 2.
ol A2, o]k Holof A= Sanofi (Paris, France)7} &1L
2 4 weelol A=Al ozl Ay el AA of e
u] Xl XH(artemisinic acid)S @k BASI=s FAS AH-835)s)
Rom [4], vfole Am FofoA= Amyris (Emeryville,
CA, USAy7| &% 52 =2 d)All(farnesene)S 7]|HF O 2 H}f
o2 AE ARE A2/ AAZ A 8ot v AFe vt o)
o} [5]. 3}k AR Fofof A= Genomatica (San Diego, CA,
USA)7} tiA#S 7|5to 2 1,4-5 &t -&(1,4-butanediol, 1,4-
BDO) A44H§- A 34 Afistel 917k 35t & 1] ol
2 1,4BDO XAt TAHL L=35}9 3 [6], DSM-firmenich
(Maastricht, Netherlands)y= #RXE 0]&3t H]E}U B2
(riboflavin) A+E S8 A AlA Ao A FEe d55t
1 gtk 2 Zo]l&= Modern Meadow (Nutley, United States)”}
Hpo] @ 7h= AARS: 913 ZebAll Aol = A Fstol A&
7Hedt a4 ALY H2E 7Hs S AAlsH ) = skt
[7]. St=Fo] A= CJ Al A Z(Seoul, Korea) W GS Z €
2 (Seoul, Korea)7} 712} Eejslo] EEA Y7o o] E
(polyhydroxyalkanoates) %! 2,3-5-Elt]-&(2,3-butanediol)
Fdsto] AdEsto], ookt AE Xﬂzc’ﬂ 2-g-5kaL qlet. of
3k M-S 7]E 3 34 thie] W 20 b oA

|H 54 Sy S E ARE-SHA] kot 2 A o] J
o] A1, A& 7HE ek Ak Al 0 = 7pdka gl [8].

Systems Biology

o

aEiu A A A B opyY v NES B S8
S AIH TR i NS ] H 2 skso] 9 ko

[19], B4 4F2 ALES 915 A2 Al 34 44 92 75
BAol = choe WAl AR 8] A Zwel AL 3

W A Aot Ao 22 S H Bl 15
A wstnE, B2 4rEe] A4l vk BAR 71 do
o E1E AR, B ARG £ B 4 A e
/\‘“5—5 —/—\—-L:;Eﬂ—/—\- o] 1/]—0 q.]k] oz O]—S]- /\(]S]/\]-k] x—]{g}.ﬂ. tﬂ—}gﬁﬂ-
& glom, o2 s A5t s HAE FRe WAL
A7\ Azko] BRFHEF [10]. thAt AR S| AL HA R
2 ArEo AR AR BB g A%, WA A=
£ SASD F0 G4 U KAS H8ske] nA R =9
o2u Y4 A2 F5o] sttt [11,12] $A2, =1
B o ATA AR Wl A A4 SRS AT T
A} B2 AT B Aol 7] o], o] A YT 771
& TSI A B 5 A 2l of B AR
9 4 Gleh b AH9IE 87 SES FEE WA
AE 3 ALl AE ) hA EAIE 9150 4
MAstT HAsteks tiAbEebd Aol W4t [13]
29 Bl S fuste] Ushs WAL Holk FHE
A 3] 22 A A Ao gAR ABH
of el3ko] §714 2ol o Zof Aic. ol efgt AW A
Zba vlgo] wrol 2% 31 43 Fol vrol, Bk 4 A
2Ee oo Aot | W A4S man
[14,15].
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Fig. 1. The DBTL (Design-Build-Test-Learn) cycle integrating systems biology and synthetic biology. The green semicircle represents
the systems biology domain, where Learn and Design stages utilize omics data, AI/ML, and modeling to extract knowledge (feedback
engineering) and to design enzymes, metabolic pathways, and cellular systems (forward engineering). The blue semicircle represents the
synthetic biology domain, where Build and Test stages involve gene editing and genome synthesis (forward engineering), followed by
screening and scale-up of constructed variant libraries to generate performance data (feedback engineering). With each cycle, the design
rules are refined and fed back into the subsequent Design—Build stages. Al, artificial intelligence; ML, machine learning.
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(systems biology)t ¥/ 4= SH(synthetic biology)2] &3]
A A= AL At (Fig. 1) [16]. Al 2RI &2 1A, A,
DA A 5 ohFe =50 28] 2 (omics) H|oJEE 54
o7 BAste] A ff B33t A5 A8 U EYAE A AH
oAl olafistal dj st BAA Lol [17], thE
o~ dolelgt YEA HAYS Faf AxE AA
(design)stil A9 ARIE Shg(learn)dt= 78S AlF
o = ik wh, FAAAESe 223k A BE
(bioparts)& &880 A2 7]5] F-A2 3| = of Al 4
25 Fe o AL 155 A SOl &
=3t vpol o BE I A7 32 AAE Bl AlE
L FE(build)staL, 71 7]5S A (test)dh= 7] e Al
Fot, o] & WHE A 0 & Sgste] n|YE NF &S S
S} 2k} [18,19].

UA AFS B dAES AAH R FAst] ¢
ot A4 Mk AA-F5-A -85 (Design-Build-Test-Learn,
DBTL) Afo]Zolth. DBTL Ao| &2 W& Al 37 7
S Ao Aol ot B oA oS 7hs e 33 &

FAYES} 7| EES G7F R A4 753 v o
T2 e} 16 T4 0.2, DBTL Abe] 22 4|28 4
P B4 53 2O AAL uigo R FelH AAS 5
3 (design)stil, &S 7|2 FUSHA +FE 5
(build)stH, LA 2] 7w REYF S AESH A5 (test)
o 3, 1 ATHE ohA) A28 meo] wodshe] o|s| At
ShaL thg Aol dh(leam)Bro 2 M M F2E 9y
et [22].

DBTL Ato] 2-& A& Al 374 7S #53}, A3l
Asete o Qle oA o s A AgtaL, A AlA
7432 vlo] @ uk-2-E g (biofoundry)2t= AHE3tE Au|E
geprol Fdta gk 22 Hlolesese] A
(Global Biofoundries Alliance)o] 7} 7| 3#9] 749 <A 4

EEEOL 2GS SRS 9om, AT 4] T 7
2o vo] ot ] 1T et 75 RATILT Yt 53
AR A A2 GYABE ATUE ARSI 5
24 F7hutol 2. 919815 SWAIA, TR AT 4
Qok2 AAH 02 AU 4 Uk AR 7|9 st

el PO ATAAE A TAYYAR gt
[2021]. o] Ao 22 BB AE B4 AL B AA A
SEREEREELEE EEE BRI R L

Table 1. Comparison of key omics technologies for microbial cell factory optimization

oo g2 gho] R E vto| eup B Y| E A
oke} AAE Fsshe SO, A v E Al 53
ghe 9)gh A S| HE Aejuf st o Fag

N

i

olsro &}
SHE= =2

Technology

Description

Output

Application

Limitation

RNA-Seq

Quantitative analysis of the
entire cellular RNA using
next-generation sequencing

Transcriptome (gene expression
profile)

Identification of transcriptional
bottlenecks and regulatory
responses; discovery of candidate
genes related to metabolic
pathways

mRNA abundance does not
always correlate with protein/
enzyme activity; lacks post-
transcriptional regulatory infor-
mation

Proteomics

Identification and quantification
of the entire cellular proteome
using mass spectrometry

Proteome (protein expression
profile)

Direct quantification of enzymes;
identification of bottlenecks
in protein secretion/stability;
direct link to phenotype

Technically complex and costly;
narrower dynamic range com-
pared to transcriptome

Metabolomics

Quantitative analysis of small-
molecule metabolites using
MS or NMR

Metabolome (metabolite profile)

Measurement of final meta-
bolic flux outputs; direct evidence
of metabolic bottlenecks;
closest link to phenotype

Analytical challenges due to
chemical diversity of meta-
bolites; instability of certain
metabolites

ChIP-Seq and

Sequencing of DNA fragments
bound by specific proteins

Genome-wide binding map

Identification of master regula-
tors and their target genes;
establishment of global regula-
tory strategies

Requires antibodies for specific
TFs; indirect regulatory effects
cannot be captured

Functional analysis of all
genes including essential ones;
discovery of unexpected

engineering targets

Potential off-target effects;
complex library construction
and screening

ChIP-Exo  (mainly TFs) after immuno- of specific transcription factors
precipitation
Genome-wide repression of

CRISPRi-Seq gene exp'ressi.on using dCas9/ Fitness.score of' éach gene

gRNA libraries followed by under given conditions
fitness analysis
Sequencing of ribosome- Ribosome occupancy man:

Ribo-Seq  protected mRNA fragments pancy P>

to measure translational activity

TE

Identification of translational
bottlenecks; discovery of hidden
regulatory mechanisms (SORFs,
ribosome pausing)

Technically demanding with
complex data analysis; requires
careful removal of rRNA
contamination

RNA, ribonucleic acid; Seq, sequencing; mRNA, messenger RNA; MS, mass spectrometry; NMR, nuclear magnetic resonance; CRISPRi, clustered
regularly interspaced short palindromic repeats interference; gRNA, guide RNA; TF, transcription factor; TE, translation efficiency; sORFs, small
open reading frames; rRNA, ribosomal RNA.
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Aoz AYg § 82 NS Aok @, oMo wa 58
2 =wolAe v s AE 3 5 9 HA3 B o] of' FRE ofGA FujEofof sh=A] ST 4 Sl
A 2R ESH A R ET 7|55 0] DBTL Aol Zolgt= o|E HlE o2 fAa 22 ek 93 4= Ut} [27].
L A QoA o FBA 7St =AE %‘%L@ o7z ThALE-E Holol Al GSMMY] E8-o F A1l H3lE 7}
SFaLA} gheh WA], Al 2R A &8} 7|REe] 4 A Y 5}3 Agketl, 7P F 83 38 woks i IehE A &
A 7]%5 S AT R, o]o] A P ETH 7]H o] At A1 7] 7] §138t 2 & ] F-H A} A< (knockout), IEHE (over-

E Hy

> Mo
2 offt 9k w2 r

A A 745 mojstaz} dt. vpx el
71&50] BH I A5etE vlol e s HAE
3 mleh o) v AR AE FA o] o g ke Al
et} g,

oz o
=

2. Al2Bg Bk gheld A 91a A B ok
AsRAESe QEAS FASHE Tt 8450 AT
g2 B, o] 2 B3l AW AN UelE o] 3steln
Sho S0 (23], HR A MR AL B AL 93t
7124 o] 3|2 A F5He B4 Hopolch (Table 1). 53] Tho
3 82 Hlol 5o A 9 B4 7]&o] WA ghet 7

%Riﬂﬂmﬂﬂiéaﬂwquaw%mﬂ%ﬂ4@

2 4o o] B AR Aol Yok o1 5 Hlol
2 BA5ko] A 2wlof o o] 5 W )% 5
ﬁgiﬁoﬂﬂmiﬁ%gﬂ%4tﬂ

[24
Ul*ﬂ‘j *ﬂ % 1o] DBTL Apo] 29 A" 2}
B @A A F7le& &3 AI2E st 5
e A LF O R o3fstal, o] & i o2 TP AhA QL
Aeet A A< aﬂéﬁ < H $He o 59l A
el of HiAF AR AR, TR, 22)a o 2
92 dlojE o] S & °ﬂ 1‘?7]7}1] EP AS2 A4
dloleE =3 shaL OH*ﬁ Fo=
g 7Rke] of2] A ]l i ’éﬂl% ”37?—__1 # At

S AA) 42 A+ =2 (genome-scale metabolic model,
GSMM)

GSMM-E u] 42 A|Z9] A7) A EYAE sl oz
BEYT A0, AT AL H2E Fol Hrago iy

Hhol e A gl ShghE-& AAtehe S AR AlE el o] A
34 9l Bk YN 2 GSMM 22 $2-ghul -
H}-8-(gene-protein-reaction) WA & FH5to] AYstsl HH-3-9]
FE BAZ L FL FHeE HHOE ool
o} o] 23t GSMM2 -84 A H oA & 4= Qe e
AR b B 25 EYEke, o 27 A Z A RS
T E(flux) A4S Algg o] A & 4= QL= gt [25].
dAZ ZHA 73 E4(flux balance analysis, FBA) B
| o0, FA402 ol A3 K YA LE GeI
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—1 =73 =it
(objectlve functlon)— JJ X4§}o}— EH/\]— foR=gn-l ;5% A8
A2 F3 23 At ol 261

=

expression), T+ W3 A 5H(knockdown) TJAIS AFE Al &
g0l 48 o) )% ah Aoltt [26.28]. 9|5 Sol, FBA 7]
4he] OptKnock &F 11222 3 }sH2-9] A Ato] A 4%
3} AR o]2) SH A 25E HolEo M, ALk
@70l ot A2E Feldon JAAHES BeS T
ATk [29].

AR hgE W AR 5 AR B tha AT GSMM
o] FHE|o] 247 4T o0, AAR chobe shkE
Ak d37E AEE] gtk A& E0], GSMMAA
Escherichia coli 73| 2] -2 A& Al & o] A& 734
S &M, Ll A gpdoll 7108k 24 S 45
Ao g =E3HHF glon, of= FA] W] gho] B 31“4
/ﬂt‘}goﬂ H]OH °J‘: o] _g%?(—? oz X—LQ.Q /\ O] ] o] _151_041 H]—
olTh [30]. E3F, GSMM 7]4E] thAl & E*’\ 2|4 3}5 5ol
E. coliof| Al XA AL 30 &5 1L E0 = £4
AR BT B) gl [31]. B3 GSMME A= oS 4L
& Agsto] Al o EAsEA] = H|al{fr(non-
native) A} A2 E E3oF R E 7135 A A2 E FU)
skal 2 Ao AR E dA S tole Z8Ha glon, 4
Ltob7t, 710 G A 2] td AL BEg-o] U 54219 7]
= st T, AETA AAY s v d8x
Z3)3}al 9l T} [26,28].

SANE 271 A GSMME thA} Bl =5 A5k 34

].tﬂ-‘—- /\ﬂi LH Z;G ;g—__]__q o}: Ul /\lxﬂ H]—O /\ %‘@'1_
AR A W 5k aLefshA] Ghethe 5&741 7k EA gt
A2 849 Ef) & (kg,), 28 4 (cofactor), T A FHA] 1]
£ 58 F7ME 1Hg a4 A9F X (enzyme-constrained
model) 7} Z-& ZpA| T} E‘?—l'éol A= glon, ol= o<
At A 2dY A5S 7HestA & Aoz ZgHoh
[32,33]. H&0f, ol GSMMOﬂ ts Lu X HolEE
E3sto] Y o2 AT S ko| 11, u| B LEUF A A
dof| A o] thAl A -GS St T 58 W= Iy
I} [8]. o] ¢ gk GSMM 7| RE A A= di 4 & A HA
of W2 A AL A AAH SR Qhste], n] &=
Az 379 e A b ARl& 7Hs Al g

2.2. ZAALA] £ A (transcriptome analysis)

A L EA A A EE RNA (ribonucleic acid)

A o] 7ot & AFA o2 SAs= 7= A=Y
© AR A digt AU RS de

of, it A4 2ol A o] thAbgek Ao A ¢l

=2 E-8EHT [34]. 29l mto] A2 of g o] (microarray)

oF &2 Yol AREESIoU, AAD F7IME AlEA
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(Next-generation sequencing) 7] <0] 573t 0] & RNA A| ¥
A)(RNA-sequencing) & 2 T 2.5 o &) =] ¢ T}

HAA B4 () BAF 28 Bl o] B §AE 0
SkaL, (i) 2B A W3- 2 WA 7] 2K (mechanism)S 78 5}
o, (iii) A} 4 2AMS] B E L7HS Al EH 8= 5 thoFst 24
o S48 % oo} 341, 012 B0l 57 HAl 24 Q1Ae] &
A FARE 7] 9l o il dS apd A st AY f-HA
A A7 T HA HekE v wabE, 27 <Ak A 24
S RHATE £BT 2 Uch. £, A T Sl
54, AR AEE A 5O 2o A AAA| IS £A 5
IHM I 8% %X]-Ll- B35 7129 efflux pump, chaperone 0)
2 9 d 4= Qi) E35] A-3- %3} (adaptive evolution, ALE)
= 354 IH“ w0 RS AT o, DAL Tl o] E
£ 58 YA o 7193t s W HEtE ghofsl=
Akl §galth. of o= LA B9} % 250
AAA 0] 1 E) B oAk A 2o A o] Ashe T
FARS, AL 2] BE)U st A SdE F A=
L AEHA WS FUHES RN o S8l
Al s e 4= ik oA ¥ Al A4 FAAE= o
AS7AL 27} whelstol A Fol MekE F15alth,

28 Thes] i wsl Eo] 2 44 BAoR A
AeA S AL e, 2ol HAAR HlolHE o
AU E QA wetof| A s Mt F 8 7IRE0] By Eo] B
EREVETS L EE PR R
S W& -7 A} (differentially expressed genes)o]] &]&5}A] 9

I A HSHE AU E YA 71REC 2 34 5= oLy
Z0] W= o, Saccharomyces cerevisiae®| X| HALA| ] o] ¥
2RE AlF AL A2 A S EE&S ARI7F B ALE G
T [35]. 3 AARA 719 A E Q1 2 A3} Bt A E o],
22} AL AR AT 2 E ) Eulo] Al 2 (Streptomyces) 0|
A T SHAE AR R At o a2 o)
[36,37]. ttob7t o 2] 7oA =345 AAMA vldo]E & 7]

Ak 59 Al (artificial mtelhgence) JdygEog £33 A
Hebol, FUT WA 24S WE BE 28 FHAR(o-

i

=

regulated gene set)S Zroly A% HA 24 YEYIE +F
Wil = A2 A E 11 9tk AAE, E. coli) ®f ek A
A glo]E & &9 A H 54 (independent component analysis)
© 2 B3j(deconvolution)d}o] & o}zl iModulono] &= {4
Ao] Ao R FHE G2 E(regulon)d} A FE 4
o] el = Aet [38]. ol M| m e W R HE S8
Ue ALHe R [39], SAH dolH=EE Fon|gt A=
3 B8 w2 = 733 fttolgt & 4= Qi) oyt
mRNA (messenger RNA) 2] oFo] thal 2] oFo|i}f g4 SAJ 1}
HEEA] W[ 5HA] o=t RHAIZE Aok WA & 24, WY
FE Apo], A ol A = o7 Q0olo] ozt AA}
Ao A% 7] Aeh S Shete] atolels] ol ek, wet
Hrp J et o3& flaf A= thE 212 glo] B oko] 59
0] WAoo} 40]

e

¢

2.3. Tl 2 A Sk (proteomics)

Erul g A Bhe Ao B4]7)(mass spectrometry)E 7|NEO 2

A o) el S o) sk vy Al 58 AvHoR B

Aahis 7ol ok [41]. B AL A= ol 4 AR 2 4 s)at

HHS SRSl A E 728 B4 F40)7) ulEo,

HAA B4 B A4 2w 4 55 a3
A

iﬂw%giqﬂﬂ&ﬂﬂ%
o]:l,} AlA| Tl A oFo] 95}z O}E
Shel, Th ) Ao o] AA| A
419l el B 4 9k [4243].
ol A B Aol A B AL chot )

Noz BgHch HA, BE thAt A2 TP RAEO
Y 522 4 “%W% Aot B F S WEolX

2827 B Ao 225
A%l wAE &‘@.Zﬂii 3Fol8} 2= QIT} [44,45]. o] 2|3t
BAS B AA SRS AAE 0B WA AT W
-’F%Oﬂ/\—] tﬂE.O] t‘é’/%]’f)‘]—% /\7‘-]{_ v./l,\—E X]?_]_’ ]1:_]—7:"2 Hr —GE}-

% oleh TR AR, Aol BR o) vEA 7
22 29t AaFiHzd AY B8 otmesirdl
(amorphadiene)& AAFSE A1 ol A, 4 Thald Ao 1A

(targeted proteomics)= AA|SF AT} = 7o) A G421 1
Q2 b 7] Yol A (Mevalonate kinase)Q} EAZHREZAL 7]
LolA| (Phosphomevalonate Kinase)2] HH& o] £35] wrol A
AR M=o R A48 WUl vl olet (4], o) F A7
St G40 S ARE FE Al Y3 TERER
A 2 3k5to] Tl WS 913, 1 AT} ofw 2utr] ol 4
Al g&-o] 3ulf o] o] 500 mg/L o]/ FE T4
g 4= 9tk

gzzﬂ, ol 2] 3] (folding), QF4 A (stability), +H](secretion)
§ sl iAol A T Al el 4 @ )
o1 4 Sick o o, T ol B 552 U2
=R Baczllus subtllzs—J A9, a2 A & ’“% 59

o 1

i
L[> 2 o M op &

o A2 BER A AR ] iR S
ool A i (protease) S 54 510] A 7] 5=

R %%4% AAR B. subtilis 34 o-ob o]
AL AT AL SR S 8 o5 A Fa ol
o e Eob S AT 0|58 274 0% AUA
g},q E;@l E]—HH 21_,] ‘_}xé/\é_oé A] S-h/ﬂ—/\] 1‘:_}1114 ] /\ﬂ; %1
AL =3 v} Q) [46]. T3 B. subtilisQ) Tl FH] A
2xelo] st A A 5 9l -ﬂikiﬂéiﬂsw45ﬂﬁ-
o] 2] 4 PrsA 2| Ak o] vl chal o] o 8
3 RS S BBk T, PrsAS] TPAS F3 o of
% ek o) Bulge Fof vl wjba) P S 9lgol

[‘
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o} [48.49]. o] 2 Bol, W5 vhol @ AL §7AF VAL & APX] HaE e 520 A B4 Aol 2 WE 4 9l 7]

2104 @57 o heatshock proteins), AFsllE(chaperones),  B1E A FEATE. o1& Sol, S AR AL E. coli 759 ThAb
] A VS

5o Wl WBkE A0 RK AL A2 A
o 30 921 o5 o] 2 Betsly] AT A TEA A

B ol B8 A] 24 dojels 97 R At mel
H BE T et £ A welo]
E3

Y oA S BAL AE 2 A4 A% AAUS

2ot o nlo o
=)

2.4. 9| A4 &F(metabolomics)

AR B A, 24, B AEA Yol EAsks A4t
o) AF &2 (metabolites) 4| & A4 0 &2 FA 5k, A 29]
Ao g gotd 4 e =4 Alsdttt [51]. tAL
=42 A UEY 84 59 FF 4bEol A Al A
A S 7P A A 0 & gkt 28 Y A #o]7] of
oll, AR 245 F8ff vlAdE Al 3789 A tiAL B

Ul AE B DRSO A YA B4 L ol Fulo|
A WMPA Aee Sk A, Ak BHa BA
A

(metabolic flux analysis, MFA)& £31 ¥ )
94904 24 7]9("Colabeling)?} AFRAS A
MFA+= Al f A H =0 S8 25 4 A&
Agtot= & 274 9AE Zs] A8 4= ot [53]. o
S|, =t A 1,4-BDO A4t Aol A= 3224 tfAbx
12 3] 14-BD0 G Z29) ohek % e} S0
o2 4432 AT, ol oY BAS0] G50}
Mg 5ol i A FdAE 5= Aok [54,55].
EAE S AL =AY S 3 54 RYEHY S S+
34 245} Pselth DR A ZAIAE %
AU 2 AR S 02 QIgh Al a2 H/d o] A A5}
o] 7.8 1%10] B 4 oIk, A A4S Bl o] 2lat 54
A 549 5 WIS Ao 2 FAR O R, 2 -5
e 24 2dolv A% 32 A E 3 =4 st A
2 A 4 olrt [5657). Eak, A=A A Zol}
ol x| Al *] # (adenylate energy charge 5)2] H3E =3
Al o) Ae) & kel o) 8738 A et 4 Sl
20 2 v 324 YAA| B4 (untargeted metabolomics)S &
gk o &5t7] o thAMA WSE WAL, o] & 5
Mol Wk sk Aolth. B 4] thARA| &4 v 2] 4 o) ¢
£ o4 22 Aatslol B sie AP AvED doje S

—=
Sse] 22 A9 o2 BAF 5 9Lov], ol B of

I

ft

2 oF Hr mjn
1 4

AAE AYARE OF 20% Al 7] BE QL) [58].
z|Fol= 57 A SH(spatial metabolomics)¥} T+ A
E ) AFA| 8H(single-cell metabolomics) & M =Z-& 7|HE9
o2 Az f tiA 249 $7H4 Fefef Al 71 ojF
goll gt ofsi e Zof AL Ut [59,60]. &2t tHARA B
ZA oL A EZ oA AL A9 YA T 25 A2
sleto 2 tiAl L& SH(metabolic compartmentalization)2}
S A BES FHE 4 A ekl el A% A
she AlZ AT telAl A Al oA chepyt Al
WSHE AALEO.2 S ste] A RAS 91T AT A
E AT 4 4% o) F8 A8 E A EE 4 ook o
A, S AT 7eS e euA 7S @A v
NE A2 ZA0 A AF 2 olget Y Ao & et
A EHFORE 1 F 40 oS AR AL QU

—_

2.5. o= 2.9 A (multi-omics)

H| & @ Ui glojE = 27| & Sl A2E 2%
SEAIRE ERTE AT o] dEERES HoT) wiell, A
A2 A2 ALY HALS st b A7 Sl
FAA — AAA] — D AA] — PAA = o] o] A= A H 9
S Ee 248 FA5tAL A AES FAA o= o]sfstr] 9
aff, theket e 9 A dlo|HE Ao T8 £A4 5k = =g o]
Z12Y o] ghet [61,62]. b5 292 HR S Hlof ¥l K7t
ojsko] M4l 2]d (machine learning, ML) 52| 7| ¥} A ¢
L glom, o|FA dofRl A|AF] £ A A n]gE Al
i 37 AA B Aol ZFEdt Zhol =7t Fe [62]. AA|
B 0% Aot AlE Z88 At & SEHE A5t

At AAl jEgste ARI7F 3L /e, ol A E-&
Y dALE FstL A 5 22 U HrE

b 2 =es &t

2.5.1 FA} OIREE o EAJ(ChIP-Seq, ChIP-exo)
ChIP-Seq % ChIP-exo(Z 21t HYHZ T A|FA)= &
%J DNA AW (AAL 1AL, AAA F)ol Als oft] ol
ARt =A1E Yol Rl ot [63,64]. o] & Folf Al W
AAF 24 T-E A =3ket 4= glom, of | HAF )IA7L H3E
AL B2 FHAAE JA S AY A gket=A] oot 4=
At & 501 E. coliol = 7]50] &3] ¥ A 4] k2 A
AP )IA7} -2, ChIP-exo 7] §(ChIP-seq®] 314 = 7H A1)
=S85t Aol A 40719] vl A] HAF QIAFS] M4 AT 9
A5 glstict [63]. o] A ¥ DNA 23 JEEF HA
A kel AA A5 At ol HAF AL 246k #
A FAREO] Al A Zof uf thel A Fof oS vy
of u|x] Q17}9] 7]5& 4T 4= 9l st

ChIP-Seq ¥ ChIP-exo= &3t 22 HAF 24 Y EY
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3 ARE BUT AT W GRS ES Aol o] S 3] Z7AA oI WA FALS It ol Btk
3% le 7128 AZelol, AE B ARlel & £g AA BHS BT, 7)%5 vl $HAES] JRE 7
=& 5 A A FARE st 2AFekE AL AA A ke o fEstth AAR E coliz WFeE 3P AR
25 $AI8t= vk E - A (master regulator) A} Q1A 8 CRISPRi A3 2o A= Al A S FEdt= &4
UE 2HT 2N A BEe A de A Alojst A {3 222 gotlof, A AR WA =M A
£ Aed ok TS FAE 5 Aok A2 RegulonDB X|HHAL A4HI S 8174 0 2 4291 A7) 9l [76]. T ohE

U YEASTRACT+ -2 dlo|E{H|o] 2 of 2] A& &3
A" TR A YR E Algstol, 54 tiake At
ol Aeet TFE A5k o 285 3t [65-67]. ]
o o1& A AT 2ot o AustA YAk dFolA =
s A-gste AA| ARE AASAY, 8 24
A ZFeshe & WA Alol & §7 diARs 8ol 753
At [68]. o] A of 2] Hlo|H & T4 22 4510 72}
o] ke A4 o2 g o] & Hig o AlFA A #A
A 222 R e A dd

2.5.2. Zx/2gF 7|5 273 SHhigh-throughput functional
genomics)

E AL ZE A YA (transposon-sequencing, Tn-Seq)} CRISPRi-
Seq (clustered regularly interspaced short palindromic repeats
inhibition-sequencing) -2 Al ¥ 7% 237 (genome-
level functional screening)”| &2 A|AH ~Fo)| A G A A}-3E
Y WAE BT 5 A sliE) g 719 Bl fA A
of =3te HEH Ao dol -84 W 2 RS
E4 2EFEFE AR AT AR Ao 2H w5 A
ZF A o] qlo Ao g a4 EE fAA T 7]s0l
t} [69,70].

Tn-Seq EAAEES §AH o] £29] ALalstel et
S T Selo] eol Hejel g WS, 53 A &
Ao A HloFet T e #RE) ERAEE A 91X 2
AR 710l (6971 ol Ak Ed 2z Eol
AT TG 7]%50] FAE B R, B A 4
Fol WpAQl AR EHALEC] ALSE EedolA
L A AR A 3, A B BT Zol B Ao
2 A9k o2 Fol 24 0&H 5 A%}, W
A7 A Aol felshAL Bl e S A4 58 1Y 5
Fol 4 AET 5 olek. A F Sof TnSeq U4 A7)
SE g BE DS sy

SAAE WA, 2 1B e
& 545k bl &&= §t}[72,73
2 Ao nAgANE Ay
Droplet Tn-Seq'= S7t0], Tl 4| 529 BHe Fe
P AT 4= JA =T [74].

CRISPRi-Seq2 £2A] 3} Cas9(deactivated Cas9, dCas9) T+
w43} 710 = RNA 2}o] 2] 2] 2 o] gafo] $04] ) 22
§HAe) WAL AAA 2 A, A § AR o]
B Brlek= 7IHolt) [75]. f-AE &S] Al A=
Tn-Seq¥} ] HHHFE 2 AT 4= Qlo] B4 AR E 2
S FEAHOE AA5tY 7]5E A4 4= 9o, & v
Mgt 715 B4& 7FsA gt ol gt A Ay V&

~
—

(L

b
:

o
o=, A47hedof ol arsteta 34 w4 B o] CRISPRI-Seq
Agste], CO, 2ANA gl BHHA By f2% 5
A A BRI A SAFEY ATS WP ORA, 3P
FAAEL AU elY3tol CO, 14 EES FHA &
% B IE QT [77]. 0] 4 S Tn-Seqet CRISPRi-Seq2
A 7% FAAT FHORA, B A4 2] 0|28
52 2 $ANE e AE T W AT Y2 B
2.2 W@ b 7]ofalth. o] @7 9 4] DBTL Aol
2o M7 AR thl W e o], Wk BgHel % A
2 b5 A,

2.5.3. 2/ 2 & = &0l 9 Z(ribosome profiling, Ribo-Seq)

Ribo-Seq A E U] )1 &] 233 mRNA 2252 53
sho] ATAFO M, o]t mRNAZE AL M E 31 gl
A% SE &9 HHER et 7] %olth [40,78). o] 2
3] T mRNA E13Fo] ofujet A4 Mo & 4 9l
of A Sk T QA Afo] 9] 2152 v Yt F AT N

£ Alsete ARS8 H ol A Ribo-Seq@] &8 714 = =
Al F A2 btk A, F2 SRS Wel 58 W7}
o]}, Ribo-Seq BJO]E|(M%] %9 )B4 )= RNA-Seq
o|E](AAFEF)Q} Bl w Bl ZF S AR E o] F S (translational
efficiency)= AAFe 4= Ut o] & &3 mRNA= F&23] &
ASHARE Bl Ho] 2 2 4] Hohs w2 BE dAE 2L,
71E A F=A o gl 22 ORF (open reading frame)=
5t, 57 S0l Al 2 H<E& A A (pausing) 7 2 3t
% 25) ofu] Al H-20]L} mRNA 27} 72 27
AL [79]. dll & 50l Y T 2l E&o] A+
Ribo-Seqo. 2 3QIslo 24, 3l F=of &
RNA (transfer RNA)7} 12259 AU mRNA L7}
WalEe 22T e A4S 4 otk

A, Al A R A 2= o] shefo|t), I AYAE 5
T M Al A AT R el gH ol el B = o v A&
Folt= A% 5 8.5, Ribo-Seq A Z7} o] H Thal 2l wiof
of 22 ASstal JeA HaW 228 A= A &
hAF Bk &3} Ak o) 7)ottt AA| Pseudomonas
putida®] A AAA|(RNA-Seq) 2} Ribo-Seq& 5 4% 2
o AEA F8 F4 oA AR T
e A9 Aol HEE AT [80]. 5, Al 2= Aol

-

3]

re

1

rEOh ot r|r o

OB AU

ria ok mlo o
oy

tlo

12
o
o
)
)
of

Ir

1 =

W Azl Moo (e AFsu, A H o 2y
A A2 W ago] WA FAE T o2 et A4 wid
4L A EB| ket Mo UL AL s FaHA A
2re] WS AN o e Al 4o B st
& T WS A5k, Ao ALE 4 Wel S S
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ahah 2] 9] el ehA) 2]t Rpelo] bt 2% 4 U2 gou, B2e) 27 W49 BioBrick
Ribo-SeqO.2 & E2e of o] Hhe|od o] $:30]  assemblyS A &5 2| 2l AAF o] A= S%0] 30% o]
WES AL AZ AU AAAZ A FOmA, v A S7HTE (841 o] F MO} BRS AU 24 4
AE M FAO A28 2|43 x| H & gojEt ol & 5 + RBS Calculator [85] @ UTR De51gner [86]%} 2 AXE
w19 Tl 4 03 A EOI ¥ 2 QS AolRe.  flol/k AMSI T, RedLibs el FE B Fej o] %
BN A A AT e A AU, P ast el E RBS go| B E A A 0}04 Z|aghe Hol® A=

A A Zol A HES ABHE A FAT 5 gt
[76]. o= 7]&8] AAl 4= E——EHA} Z fEgto gz o

7] A YE ATE o] Zojdl S 9lom, FIAHO T F=9]
W a8 2255 ol A S SHistshe o 710t

WR AE 3] §BH 4GNS oA s
Qe o) 4 A28 BT Y Yo shife] AE oro] 7
T 5 QLVEE FE WA AN GBS
BE A2 FHHOE YUATT A2 /)5S Rof
she SHRO A [81], ALHARE O] A design)- 514
(leam)’ &A1 4 HJo] el 545t 22 9] S A
Shehel, T AR 3 (build-A ey Tl 3

—= o

AAE EE AU F HE 2R oo =5 gt [82].

SAA BE D 3] 2 L2 (build: genetic parts and circuit
constructlon)
311 Hjoj2 PF Y W HEF FEY
Hio] @ HEZ 2o umgng, gL A A H(ribosome
binding site, RBS), T 4] & (coding sequence), E|u|u|o]E|
& Uste £A2 A8 715 DNA FEES FAsE
74S oJu]gtr} [83]. 7] BioBrick 122 Mg+ A1 g

£ A o &S BT [87]

DNA 2% 7]&-2 A5 Algtas 7|Hk 22 oA Al
Zglglon, ol EX 97 AEE oAst= Atasw
DNAZ Hthsl 1l T4 DNA A2 & 4(T4 DNA ligase)2 172
Shi= WA o|th (Table 2). 12| ARt a4 S22 A|THE
Q4 Adu FE A wEe] Aol ATHE L
Gibson assembly7} Hche] A= AL o] L3 FH 3o
(scarless) ] 2] DNA 27 FA] o A3 HA o]t 3HA

S Y} [38],

BEA 2242 94 AT sl 0 HEY B2 Y
ﬂmﬁﬂ@#ﬂﬂ°1ﬁ-%ﬂ25%mﬁﬁ§%ﬂﬂ
Sl 22 HeFS AW AT G AFAEL thep

o EEY WE e 22 7|ES JfEste] BAR o 4
ZYS A A3} gtk Golden Gate(Type 1IS &4x) 7|4t
=Y %E”(modular cloning, MoClo) A A7} #¥ 0 (7] &
Q1 A )0l A E 2 (B A S22 0 AA o
ARV AZH 23 HAS H2Ao, AR AR
S wo] AE0R 29 AEE Uk 22
[893901 olzfgt 9— B ASEE =S 2 +94
s, AGLAHE-S MoClo Yeast Toolkit (YTK)L} 2
=of 23 ﬂﬂ R Z3}14 toolkit?} Addgened} 72
= AL T ol e FEI A LE S &4
Nl

ﬂfﬁmﬁ

1 883k 4= 9t} [84,91].
SAIRE o 3] oA RS 2

i3
ol
S0
rr
>

fHoz 3
Yol EAjetH, o5

FEoe| AN FES AL E5AE ﬁﬂ A sRetal 2 AR lego] @ol 28 %= Y
Table 2. Key DNA assembly methods and their characteristics
Method Mechanism Key enzyme Scar presence Throughput Application

Ligation of DNA fragments
with compatible sticky or blunt
ends using ligase

Restriction-ligation

cloning T4 DNA ligase

Restriction enzymes, Restriction sites Low; sequential

Subcloning of single

remain as scars ~ assembly genes

Joining of DNA fragments
with overlapping ends by amix 5’

exonuclease, DNA

Medium; suitable for Sequence-independent

i | ling 2—1 1ti-fi:
Gibson assembly of exonuclease, polymerase, polymerase, DNA ligase None assembling 215 multi-fragment
. fragments assembly
and ligase
Synthetic biology

Type IIS restriction enzymes
cut outside their recognition
sites, generating programmable
sticky ends for assembly

Golden Gate (MoClo)

Type IIS restriction
enzymes (e.g, Bsal, None
Bpil), T4 DNA ligase

High; assembly of >
10 parts in a single
reaction

standard;
combinatorial library
construction;
hierarchical assembly

Yeast homologous re- /n vivo homologous recom-

combination bination within yeast cells

High; assembly of >
10 parts in a single
step

Biofoundry automated

None
workflows

MoClo, modular cloning
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Ast7] ool AEakE o 29 7]%o0] 2 7HLh YTKS
Standard European Vector Architecture(SEVA)= <3 H-84]
& shgon [(9293], £me] £7 AET 5L ol 84 in
vivo A28 S 2L 25 AT AT 20A T 2ol
Beje] 25 M s Ak (18], o] WL T)Ee] B
Fo 224 IS AAH0 R Beslel T, 25 2
AE AN DAFOR £ 5 YRS LGS B
54 BT AEoES] AR o WY AT S 7HsA o)
of, FU2 HFPA F H A& A Hsl= Y= g
Y2 HH o & A Xt @A K-BiofoundryE H|E
Sk Q9 vo] 9 uke-T 2| 52 51 =l Jf o] AL H 2 St

AEE A A2, ol A 7 B S22 37
20,2 /485 7)uko] |1 gk,

3.1.2 2 H A} 3] 2 4 #(genetic circuit design)
FAA &= AA= AE Yol A fFAAE]l A
THEolll= = AAil(logio)S =2l r HAS
ojujgtch. M|z A4 H3E 3ehE ik flel ¥
AZE s st AY A B2 FARE A
&% A 435 WA 18
7F gkt whebA, g ik GASHE T
= FEoH, A R =4 S0A 4
517] 918l 54§ 2 271 F a5t [94].
A& =i, FH A4 (quorum-sensing) 41 2L} A 3L f 2}9}
< HA-SH B2 Ax UEel Y F o
AFAYEf o] whet A H 2 S Ao ® 24 S AAE &
o} [95]. T3, AFAA A2 A -SH A LF oL thA
A 32 Folf & Wt A3stu =, A=
olg|gt el & Hibel Wy FHA B2 E AL55ho] A2
Sl T4 Ao] & FAL 5 AUk A& =0, AR
3] 2+ Ho] 24l A (biosensor)E ©]-§-5Fo] 54 thAR=E (A
A, A, 2E AlE )Y AEZ W s=E AAstL, 1
off gr3 I AR HHS A5 02 A= A/ A O R
TAE = ol AE 5o, YR AHE HAF Q1A (Allosteric
transcription factor)E ©]-&3t vlo] Q2 AlA F 2= EA A}
AHEE QA= SA| AAF 24 S Ael S5 AR T
& AdstA 24T 4= glo [16], GleN6P A4 & 2§
S N-otA S FFAM BAF FAH o A= 5 =4 §lo
T 97gL9] =& A o] A EUTH96]. A TA L}
it dAE AE welshe ASE 32 gA| ofolAax 2
< &g A AR BE AT [97]. Wb, A 3 '
= oy EAE WZs Rt &4 %4(dynamic
regulation) A 2F-& A 2& 4= U}
2|24l CRISPR A|ABLE &-8-9F 32 = T 2o E(program-
mable) S| 2 &= ZF4Hb 71 QI dCas93} sgRNA (single guide
RNA)& /4] % CRISPRi 3|2+ ¢19]9] =8| 2 fF4A& A
AEF Y AEZ Y ALY REHRE TR A5t
o 5 Qes HoEqlnt [98]. E3L, Cello EF 22 in
silico A =47} B4 =] J=E AFom HA 5=

"

N
ofo
ol

]_

|
ol r_T‘l_.lh >~i
= 2 Ho rr do o &

]_

o e
o,

tlo o

vy

s

ol
-
X

o 4y

TE7HA EAH T [99]. o]t 54 Ao 7]e2 Al A
e &Aoot AL S8 20 WEs S A +5
O} AT A S SAl FEAE AR 7| gl

3.1.3. 7= 7} B} X EX(strain development strategies)
o N DA A = AT ARt I EE &5 v =
Estar, oy o e S AA HEAES IR
&2 Aishe 2F it #5E wHEold=d], o] 2 ollA
ket 71 it ko] @ 4-E Tk CRISPR/Cas9 4744 HA]
7|ee B S oy 2t v 2 El Fo A = Tk A
A9 B AL S Ao S 4 QES nEshEo] ghrt
[16,100]. o] & ¢l3f F2 F-H2+2] A u gt A A (knock-out),
A 2k, A9 (knock-in)o] A KT DA Ll o, o
QA4 B Eat ) SAlo) A sl whet 24
S04 el om 28 W Wgeks A 243}
oM BT} 7] 4 02 143 E st o & Sof, g5 ulY
H AfA](minimal chassis) 7= &2 23 FAAE A A
AR A S AlE Aol HEAIZAL[101], DNA At 7] 5
o] A|A%E dCas9 Tl 2L 0]-&35}= CRISPRi 2 CRISPRa
(CRISPR activation) 7| &2 SA A& G4 02 HlER|
oA B AR HEe 7t Ao g AR ALY 24
sheh 4= Qe ot 2 AbE] QT [102]. o= thA B =9 2}
oA o) W S nAISHA| ZE(fine-tuning) S} = H| Ui
& 5A AHE-H T

CheFEt vl @ B0 233 Al sljoF 5= A
g A AEsH ol Eefe] Mol & :
, ZRIE 7= RBS A 9S 23 o F o4
& 23 ol B & F55kaL o5 1A
S, A A 2SS ARA| Lt 29 o
2 AET ¢ Ut A& 0], ZEXE L RBS
g it 2 153 F, Al g P o & HH
off A= E 7N Ast= Aol == )ik [103].

AAE FF7E 71 e Hol A & 7ol ALE
7FAG =7 = gtk o] = nES 9 2kl A7
HjFsto] Al FAMel 2 24 A& okl H3H
T FAAE sl 55te] of® Wo]7t Aol 7| F=A &
4 9lom, o]g A A FARol= A FFo T =Y
o] 5 ol FEHT F, d5ol 2 #70 ALES
A-gsto] WA Aol E SRk, A4 s X A+-E
< SOl g A HFE ek Hol de 28
ATH [104]. o] &} Zro] A == AH- &4 Hlo|¥ = DBTL
AFo]Z 9] ‘Learn’ THA| 2 A th3- ‘Design’s & =, Ab-&
o} A E0] Aghs Soff 24 A3 Aol &8 5= ARt
of w2 A| =531 it} [22].
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ol s0
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o oox & 2
™ 1o o rr
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Az o (M oX i of

tlo
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32. 314 B3@F BA 9O AT 3] J(test: high-throughput
phenotyping and screening)

Build &A1& Ff thet DA o] o7} A2 Aok, o
o GANA = ol 5ol AAR Yot 7sS sHs=AE
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H7Htesysllof et AF Ao 2= AYH 2 dFS gt of, A7Fef A of 2B E FTH O R FolUME AHE =

o] high performance liquid chromatography (HPLC) 59| &
A Al S ol 8o AAVE FES 2ol HA0R 758
w7k519lch. et DBTL Aol Zoll 4 7% A o] wale
F% A% Aol A2 gee 2TtelA Hl, o] 2 <l
N AL A o) WEOR HEEE A9 U
o} [105], O <15}, FAA =} Alfolliz Sultof ] 4]
o} Ffofl Foh= et 74} 2ol B 2] & w2l A Stsh|
B7kst7] fiet AFEete arAf el 232 (high-throughput
screening, HTS) 7] & 0] 2|44 0 2 HA 3| k.

3.2.1. BAJE RAE 7]HF ZZ EEFo] B cell-free system
prototyping)

TEA| 3 ZAF-H 9 (cell-free protein synthesis, CFPS) A| 28] -2
Alzoll A HAFE o] gt R A5 (RNA AL, 7
HE& RNA F)& FE510] AlE T ol A f2 dd S A
%3}5 71’\§ A2 5 v eFsbA] Fare HAF o vhE
Peozn AR 32 thAt F 25 AL Yol 3
i’z\% e Eo|nh [82]. 7]& HEHE AlZE AH

P | k= B o] Ajzto] who] ’\3517\]‘3&, =
AEE A 7] B A e S Al AL A
A dx}—r o) 75 2ot AldE = vk &
ol gt} [106].

ojg|gt EA& o]-&5tH T FAA = E Aol ¥
ol Al 1H°ﬂ’\1 Bl AEFFo 2 M, A RE(ZR2RE,
RBS 5)o|u} 7heket f2t 329 a3t 32 EA (=1
AR SH A 5= Al Aol FEFE WA ghar kot
(prototyping) & 4= QUth. T3, HH AL H 2= S A0
Aol 54& et A, AbE o] Al azdhE §atsbA] st
= ol BAZ iz, of o FAIE A 2B o] g5i 7]
Qi £a, B2 A EAHE DA 1SS Bkl
It} gl & 5901, 7005 oA+ &A 23S in vitroo] Al

- - Wi )%k F & A ETEinvivoRE = YO ZH TH
fol &5 T3k AHI7F RarE 91aL [106], 23 E AlA

Fet FA| L vlo] @ AlA = A EtotbA| gto| B e &
B7Foks dl 0]l QIH} [107]. A E AJLEE
=2 JEEE}OWOH -8 Wk opy ek, Al Yo

1 dojut7] o Algt AR LA Bl A
ARl 7143} o YA Y& 83t kg A A= dlol &= &
L= 31 ]t} [106].

FE FAE A A" Tt
A Y2y A H 2 E AEGSH =
* R e AeR 7]ﬂ%5h‘% ol= 75l YAY
Aol ¥ AAE 2710 A= wE A g (quick-fail)’
S 7hstA ot AA A+ Y B&S AL
Qith E3], 23F A FHF ZE(9: Echo 525[Beckman
Coulter Life Sciences, Brea, United States])o]u} 1]A|-8-A]|
(microfluidics) 7] ¥} ARtstH ) 512] H (picoliter) 42
SagF Fro|A -2 CFPS Hh-g-& FAlo =33 4= )

ﬂ%
4>

22 o N o
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>~r3i

° }11 mIﬂJ ﬂ-l-u,:’-‘ _{E '1)’
i) >“ I> 20
i)

_>.i‘ b
o ot |o

2
7

1>

9 ol 944
Eetol P 4 Gl &

Yot Wako i 714o] A3k 9Tt [108].

3.2.2. #Z 7JHF X 2]gF AT 2]y 7] a(cell-based high-
throughput screening)

A3 7)8F DA g eF AT gL thgeo] Hol F& EE‘CTF =}
gho| B2 & FAlol = A& Bt 7les= v
S}, AEA o] BA vl ol HPLCY Gas Chromatography—
X8 A7) 7k Baks}a B4 A|7bo] Zol, vt o] bie)
2] 232 o= F-A stk [107]. t+f &2 ¥ ol A& Al 4tst
© AL AR A7), HolAEY e NEA B
kA 0 & BAsk 2 ol A Ee ATEY 7134 AT

[e]

319} UPOlii~Eﬂ l ElsE= 010
Yol ”Oﬂ*i W A5 FA st A *ﬂz‘—i 37,
pH. B4 52 A7 mUHPS 4 glo
B Febaa A7 4o A 2ol Holelg vl iz
e 4= qlo} 238y RS 87| H o8 FAAI H
Uol7h, B% YAl 4HEe| SRS G AEe wekels
AR AN E 2ol Eelahel, AAkAo] & A EASE
TEIIE =S A=E Y 5kl 3
Aol iy Aol AlEs

(fluorescence-activated cell sorting, FACS) A £
Gk ) o)A BATTE 4= Qlonl, o] % ol 7 7k Al
vk ZE 0 2 A @ 228 2= 91T} [107,109]. NitR #o
A& A3 muconic acid 22 2] g oL [110], cis-
2l A1) gAY ot A (1] 22 oAl ol gt A2
ol agAdLe E .‘.‘?]_0:“,1—]:}' 0] 28} biosensor-FACS ZzHZ 2
A-s5ket é?ﬁ}oﬂ AT WY flole shof =4S A
SPEE EEREE P EEL EREREE S
skal Qlct.

o] Hpoll= A= 7]%

ﬂ
d b

p

|

c

Ao Aol vAA
(microfluidic)q 7| &2 &-83F N & (droplet) 23 2] Y, T A}
BB A5 5 Ao A £A Jh EAE, ALES
A5kt 7| A B (chemostat) AH] 5= Z8E 1 Ik
[112]. A2 &8} qfmo|m, o] 7|&2 DBTL Aol&
T Test A S W& glo] o= AA 7 7|17ke ©
o= o 71olskaL ik A 2 sk BA ol A ol Zl gt
E -5 03 dolel ohAl wAlE) Y 58 B 24E o
Ch3 g ARelof vk =il glom, o] 3t Hloj g == dA =
o] Agho] & 374 243} J¥-E5 FFAI7IL it

i

4.0)2) AT A5 3t} vho] 2 upe =]

Azd D PR FRA BEE 474 4
| Zel¥l DBTL Aol 3& 40 W2 Tato] 42 A2

[
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Fo] F A& 73l Ao, o] & A

%61 U= = A Ea\i—é}7] T]?\S_}: 6-]14/0
WS DBTL Alo|29) LE WA el A58t
Zlolt} [113]. o] & S8l A st oo Het 7]e50l &

34 0.2 AT Ahu|op x| Ho] vk uo] oukg = 2ol ok,
“fol 23t el F4AHE o] DBTL Aol £ 2 3

%ﬁﬂiﬁai%ﬂ} 23
%ﬁ“ﬂﬂ4%2

O_u
PN
i)
ol
o
K
L Hu
by
=
o2
N

]U‘:ﬂﬂr HPOIEJ}T‘: 29 5"*}4 I’—Eﬂ—

EE YAE2 Y 253 a2 ASH
A & 7P AQFE L Uk [114]. o] 2|3t Ab-5-3} o] e}
58l AZE A7} glo] oA 424 5] 9] DBTL AfO]
Al&sHA HhEg = Qlo Bz, 2 sk A= Al
o2 w5e 4 Qe [115].

A AR vio] eubgEe] F5o] ihs] XYl
dow, AAZ v, G, EU, &3, T, Y& FollA=
=7} ©919] thg Hiol e ubp- a7} P E o], SJorE T4
FE A AESS7A ohefet ZRA Eo ﬂ%ﬂi’ A}
4 6 2 u]=9] iBioFAB(Y 2] =] t)3} ¢ BioFoundry
+ GoldenGate 29, Yl=3xo] 7|wt #3 g (quality
control, QC), 21 WOk B8 E3te) AU AR 223}

£ 77% 70 AHZE ATk [116]. G2 o =W 2] A
J}%EE](Edmburgh Genome Foundry, EGF):= ]34 2] u}o]
Q u}9-& 2] 2 A, Golden Gate 7|HFe] DNA %2 & ulo]Zg}ol-&:
GA3) AEsP o, AZE L 32 6](Oxford Nanopore)
71&E o] g8 A& Aol AlEA 719 A ElEF QC Al A
d& F55ko] 5 DNA 59 41242 gha gt uf Sk
[117]. et A = gt v 28k 7 (Korea Research
Institute of Bioscience and Biotechnology, KRIBB)E 4] ©
2 K-Biofoundry7} 5 5 0] 7} Folm, o] = =7t &4
Al A QTR A A453}, BEET), AIE H5oto] At

T e = e R
o o & b
o]
=
42

2N
JLJ

Aol ] ke e AW AU A% AT AL BE
2 8}1 9)Th.
o o7k, vlolomteE o 54 BAHOR Al %

ML 7|%9] EQ& FxI8kaL Qlet [118,119]. o]= LA 2%
Ao SRFL Qgtol A B o= Y Wskal
E213} vlo] @ H g o] ¥ (bio-big data) S A A 5}7] wj o]
ML 22 oh3 @ w2 wof g, A2 A3t 5 Wit o
OB M-S Sh53toq, Qlto] A A o= wtefsty] ol &
At A=A AA A2 AT 4 AL, oS 7R A
£ FAg dE 50 5Y Jilich AFa0]4= Auto
BioTechghi= t}&4] wlo] e a8l & L5389, E. colif]
ZetAu|e 29 @ CRISPR/Casd S-AA] HAL 944 2%
3}5}al Yo7t Corynebacterium  glutamicum@} 732 Z13-9F A
T3] FAAEINA| 230] 25 0 2 =87t [91].
ol Zo] ML &ilg|Fo] thg 2929 HTS tHofE S

=] of

-

ol
-

1:1{0

M FHE ARE EHT 4 Y, 08
B2 ol Aol S50 Sl

4

oo HU 2
kﬂ

i [o 2 o>
H |o

oz oy L

1
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Ae. 5
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S
2

q
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1 Qle} [116,121].
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(e}

5. CONCLUSIONS

A AE B A 3 el
ERE RPN R LS
E3+5l= DBTL Afo]Z
2oz geHor
sp &), nao
ol A 5

RS REL SRR
o) A& A A4 0 2 A
aﬂi%ﬁwuﬂ5}a11%q%ﬁﬂnggm14
ARl A EA T, o] o] HIAF HIE ALt Al E
of mAls Y= S8kl oAfA et [122] =4,
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= Bt @S oA sjdo] agt Aot 53] 253t
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